Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2020, Vol. 14 Issue (2) : 383-399    https://doi.org/10.1007/s11708-017-0505-3
RESEARCH ARTICLE
Smart model for accurate estimation of solar radiation
Lazhar ACHOUR1(), Malek BOUHARKAT1, Ouarda ASSAS2, Omar BEHAR3
1. Electrical Engineering Department, University of Batna 2, Fesdis 05110, Algeria
2. Laboratory Pure and Applied Mathematics (LPAM), University of M’sila, M’sila 28000, Algeria
3. University of M’Hammed Bougara, UMBB, Boumerdes 35000, Algeria
 Download: PDF(3673 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Prediction of solar radiation has drawn increasing attention in the recent years. This is because of the lack of solar radiation measurement stations. In the present work, 14 solar radiation models have been used to assess monthly global solar radiation on a horizontal surface as function of three parameters: extraterrestrial solar irradiance (G0), duration sunshine (S) and daylight hours (S0). Since it has been observed that each model is adequate for some months of the year, one model cannot be used for the prediction of the whole year. Therefore, a smart hybrid system is proposed which selects, based on the intelligent rules, the most suitable prediction model of the 14 models listed in this study. For the test and evaluation of the proposed models, Tamanrasset city, which is located in the south of Algeria, is selected for this study. The meteorological data sets of five years (2000–2004) have been collected from the Algerian National Office of Meteorology (NOM), and two spatial databases. The results indicate that the new hybrid model is capable of predicting the monthly global solar radiation, which offers an excellent measuring accuracy of R2 values ranging from 93% to 97% in this location.

Keywords global solar radiation      statistical indicator      hybrid model      spatial database      correlation coefficients     
Corresponding Author(s): Lazhar ACHOUR   
Just Accepted Date: 27 September 2017   Online First Date: 14 November 2017    Issue Date: 22 June 2020
 Cite this article:   
Lazhar ACHOUR,Malek BOUHARKAT,Ouarda ASSAS, et al. Smart model for accurate estimation of solar radiation[J]. Front. Energy, 2020, 14(2): 383-399.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-017-0505-3
https://academic.hep.com.cn/fie/EN/Y2020/V14/I2/383
Country Station Climate and climatic zone Latitude/N Longitude/E Elevation/m WMO index Temperature
Tmin/°C Tmax/°C Average/°C
Algeria Tamanrasset hot, desert (IV, 5) 22°47′ (22.78°) 5°31′
(5.517°)
1377 606800 12.9 30.0 22.9
Tab.1  General information of study area

Meteonorm V7. 1.6.26237. Global meteorological database. 2013–03, http://meteonorm.com/

Fig.1  Global solar radiation and extraterrestrial radiation from 2000 to 2004
Fig.2  Daily and monthly mean sunshine duration throughout five years (2000–2004)
Models Model types Regression equations
Eq. (1) Linear [1,2] Gg/G0=a+b(S/S0)
Eq. (2) Quadratic [20] Gg/G0=a+b(S/S0)+c(S/S0)2
Eq. (3) Cubic [21] Gg/G0=a+b(S/S0)+c(S/S0)2 +d(S/S0)3
Eq. (4) Logarithmic [22] Gg/G0=a+blog(S/S0)
Eq. (5) Exponential [23] Gg/G0=aeb(S/S0)
Eq. (6) Exponent [24] Gg/G0=a•(S/S0)b
Eq. (7) Linear, latitude related [3] Gg/G0=0.29cosφ+0.52(S/S0)
Eq. (8) Linear, known constants [4] Gg/G0=0.233+0.591(S/S0)
Tab.2  Regression models used in literature
New models Regression equations Number of terms
Eq. (9) (Fourier series) { Gg/G0= a0+ i= 1jai?cos?(i?(S/ S0 )?w)+bi?sin?(i?(S/ S0 )?w) 1j8 j=7
Eq. (10) (Weibull model) Gg/G 0= a1?b? (S/S0)(b11 )?exp?( a1?(S/S0) b1)
Eq. (11) (Sin equations) { Gg/G0= i=1jai ?sin?(bi? (S/ S0)?ci) 1 j 8 j=7
Eq. (12) (Power series) { Gg/G0 = i=0ja i ?(S/S 0) i 0j 7 j=6
Eq. (13) (Rational model) { Gg/G0= i=1j+1ai?(S/S 0)j+ 1i(S/S 0)k? i=1k bi? (S/S0)ki 0j5, 1 k5 j=3
k=3
Eq. (14) (Gaussian model) { Gg/G0= i=1jai ?exp?[( (S/S0) bici)2] 1j8 j=7
Tab.3  Proposed regression models
Algorithm: Chart of the proposed methodology
Input: Calculate (G0, Gt, δs, ωs, S0) using Eqs.(1–5)
Month(t) ∈{1,2,…,12}
Model(m) ∈{1,2,…,14}
Output: GHYBRID= The prediction of the output of the GSR
Establish and train models by training set G
Calculate Error|(t, m) (%) of the cretirea: MBE|t=1,…12, RMSE|t=1,…,12, R2|t=1,…,12
For i in {1,2,…,t} do
For j in {1,2,…,m} do
Select optimum model (model|(i, j) by training set G
end
end
Construct: GHYBRID={G|1,…,12}
Return G
Tab.4  
Model # Regression coefficients RPEmin% RPEmax% MPE MAPE MBE MABE RMSE R2 TT U95 GPI
a b c d
Station #: Eq. (1) 0.596 0.127 –9.8176 12.5664 –0.3710 5.1723 0.0004 0.0352 0.0445 0.3205 0.0649 4.2890 3.1669E–06
Eq. (2) 0.396 0.69 0.385 –9.8279 11.5426 –0.4040 5.1031 0.0001 0.0348 0.0441 0.3436 0.0159 4.6300 1.9427E–07
Eq. (3) 1.29 –3.05 4.43 –1.98 –15.8505 7.6161 4.1904 6.4015 0.0316 0.0452 0.0552 0.3198 5.3722 11.1657 0.0712
Eq. (4) 0.72 0.0933 –9.7720 11.9338 –0.4649 5.1403 –0.0003 0.0350 0.0443 0.3295 0.0506 4.4239 –1.9456E–06
Eq. (5) 0.6027 0.1832 –9.7507 12.7314 –0.4268 5.1768 0.0000 0.0352 0.0445 0.3191 0.0008 4.2619 1.0528E–10
Eq. (6) 0.719 0.136 –9.9889 11.7500 –0.2359 5.1427 0.0013 0.0351 0.0444 0.3285 0.2228 4.4341 3.7871E–05
Eq. (7) 0.29 0.52 –22.7743 11.6665 4.5915 8.5264 0.0335 0.0588 0.0725 0.3205 4.0064 19.9949 0.1323
Eq. (8) 0.233 0.591 –22.0436 15.0635 1.8579 8.0791 0.0145 0.0552 0.0720 0.3205 1.5798 20.3751 0.0229
NASA–SSE #: Eq. (1) 0.668 –0.0248 –13.3753 10.2434 –0.4263 5.3543 0.0001 0.0347 0.0431 0.0678 0.0175 8.4543 5.8393E–07
Eq. (2) 0.537 0.346 0.254 –13.4497 10.9128 –0.5253 5.2914 –0.0006 0.0342 0.0430 0.1117 0.1003 8.4209 1.8089E–05
Eq. (3) 1.48 –3.72 5.47 –2.64 –13.8272 11.0891 –0.2134 5.2843 0.0014 0.0342 0.0427 0.1552 0.2549 8.3727 –1.0927E–04
Eq. (4) 0.645 –0.0158 –13.2409 10.3043 –0.4827 5.3644 –0.0003 0.0347 0.0432 0.0608 0.0469 8.4582 4.2293E–06
Eq. (5) 0.6683 –0.0379 –13.3521 10.2685 –0.4493 5.3578 –0.0001 0.0347 0.0431 0.0676 0.0089 8.4545 1.5214E–07
Eq. (6) 0.642 –0.029 –13.6043 9.9043 –0.1532 5.3280 0.0019 0.0346 0.0432 0.0605 0.3318 8.4589 –2.1230E–04
Eq. (7) 0.29 0.52 –18.3537 22.5468 –1.8769 10.0279 –0.0089 0.0636 0.0780 –0.0679 0.8811 15.1881 0.0099
Eq. (8) 0.233 0.591 –18.2111 26.2748 –4.8247 11.4415 –0.0279 0.0722 0.0891 –0.0679 2.5333 16.5794 0.1114
HelioClim1 #: Eq. (1) 0.525 0.185 –9.1652 12.5458 –0.4567 5.3479 –0.0001 0.0347 0.0434 0.4491 0.0094 8.5121 –1.4687E–07
Eq. (2) 0.586 0.012 0.118 –9.4256 12.7389 –0.3475 5.3342 0.0007 0.0347 0.0434 0.4506 0.1181 8.5049 2.3161E–05
Eq. (3) 1.28 –3.11 4.96 –2.46 –6.7368 15.8996 –4.9151 6.5888 –0.0293 0.0414 0.0533 0.4083 5.0512 8.7245 –0.0573
Eq. (4) 0.703 0.13 –9.1088 12.1369 –0.4759 5.3858 –0.0002 0.0350 0.0436 0.4430 0.0284 8.5408 –1.3642E–06
Eq. (5) 0.5375 0.2806 –9.1821 12.6252 –0.4589 5.3438 –0.0001 0.0347 0.0434 0.4496 0.0122 8.5093 –2.4915E–07
Eq. (6) 0.702 0.195 –9.3560 11.8866 –0.2431 5.3834 0.0014 0.0350 0.0436 0.4446 0.2444 8.5338 1.0100E–04
Eq. (7) 0.29 0.52 –21.6360 20.0927 0.6092 7.1234 0.0057 0.0461 0.0591 0.4491 0.7449 11.5213 0.0023
Eq. (8) 0.233 0.591 –21.4811 24.9780 –2.2279 8.0954 –0.0133 0.0523 0.0661 0.4491 1.5792 12.6876 –0.0141
Tab.5  Correlation coefficients and statistical performances of the eight regression models
Regcoeff Models of station data Models of NASA–SSE data Models of HelioClim–1 data
Mo. 9 Mo. 10 Mo. 11 Mo. 12 Mo. 13 Mo. 14 Mo. 9 Mo. 10 Mo. 11 Mo. 12 Mo. 13 Mo. 14 Mo. 9 Mo. 10 Mo. 11 Mo. 12 Mo. 13 Mo. 14
a0 0.6963 4402 0.6458 1294 0.6534 29.79
a1 –0.00074 0.7422 0.8563 –1172 11.58 0.1217 –0.0025 0.7535 7.548 –385.3 –22.23 0.3022 0.01131 0.686 1.438 –7.682 0.6701 0.4122
a2 0.02253 0.178 128.9 –96.05 0.6242 –0.02884 6.902 48.03 31.08 0.6405 0.01168 0.7934 1.751 –1.336 0.05613
a3 0.01606 0.09682 –7.475 228.1 0.6872 –0.00013 0.0122 –3.178 –39.61 0.2254 0.02589 0.02395 –0.1923 0.906 0.09885
a4 0.003151 –0.0087 0.2411 52.52 0.1285 0.009874 0.0165 0.1177 37.54 24.59 –0.0054 0.02291 0.01068 –0.2057 0.1153
a5 –0.0115 0.02008 –0.0041 8.04E+ 11 0.001152 –0.0044 –0.0023 0.2433 0.01102 0.03334 –0.00029 0.102
a6 0.01066 0.01588 0.00003 2925000 0.003111 0.0193 0.00002 0.3812 –0.01144 0.01143 2.962E–06 1.769
a7 0.02115 0.1068 0.06147 0.00835 0.0138 0.3109 –0.01135 0.01332 –0.1321
b1 0.00219 1.888 4.41 15.08 0.7144 0.009219 1.699 3.761 –20.19 0.717 –0.03141 1.899 6.209 –2.009 1.008
b2 –0.0092 11.32 86.32 0.9052 0.002379 3.969 –18.45 0.9054 –0.01288 8.912 1.373 0.8028
b3 –0.01583 35.8 176.6 0.6086 0.002423 39.71 49.14 0.7551 0.01185 32.61 –0.3138 0.7064
b4 0.005144 72.99 0.7598 0.00031 73.03 –0.4112 0.01217 59.46 0.761
b5 0.00462 78.42 4.135 0.009481 47.45 0.7825 0.005365 41.72 0.6211
b6 0.00673 52.33 –0.1472 0.001067 208.5 0.6594 0.007182 381.3 –1.037
b7 –0.0051 38.09 0.8107 0.02605 379 0.5835 0.002506 221.2 0.6939
c1 4.703 0.01086 5.624 0.02825 3.386 0.284
c2 3.03 0.1335 8.639 0.165 4.618 0.02634
c3 –4.667 0.1986 –10.68 0.008536 –2.899 0.04647
c4 –5.141 0.049 –13.74 0.4753 –3.996 0.002403
c5 2.029 0.5788 –5.234 0.04859 0.2423 0.02338
c6 1.573 0.1578 1.886 0.04607 –0.3453 1.501
c7 3.227 0.01254 1.007 0.05624 –9.633
w 96.42 212 13.85
Tab.6  Regression coefficients of six proposed models
Meteorology data Statistical indicators New equations of proposed models
Eq. (9) Eq. (10) Eq. (11) Eq. (12) Eq. (13) Eq. (14)
Station RPEmin%
RPEmax%
MPE
MAPE
MBE
MABE
RMSE
R2
TT
U95
GPI
–8.7868
10.8271
–0.3111
4.5037
0.0000
0.0306
0.0376
0.5981
0.0072
8.0037
–3.0582E–08
–12.2603
11.6486
–0.3112
5.2925
0.0007
0.0361
0.0452
0.3059
0.1118
6.0573
1.3992E–05
–8.8033
10.5034
–0.3011
4.8479
0.0003
0.0332
0.0402
0.5160
0.0623
6.8463
2.7062E–06
–9.6444
11.3849
–0.4218
5.1232
0.0001
0.0349
0.0442
0.3365
0.0023
4.5149
3.0183E–08
–9.7259
11.5121
–0.4310
5.1138
–0.0001
0.0348
0.0441
0.3414
0.0161
4.6272
–1.9963E–07
–9.7897
11.3622
–0.3457
4.5551
–0.0001
0.0310
0.0384
0.5763
0.0285
7.4887
–4.9416E–07
NASA–SSE RPEmin%
RPEmax%
MPE
MAPE
MBE
MABE
RMSE
R2
TT
U95
GPI
–8.8038
7.3424
–0.2431
3.9024
0.0002
0.0252
0.0338
0.6225
0.0381
6.6317
–5.4049E–07
–12.5628
11.4088
–0.3536
5.3700
0.0005
0.0347
0.0438
0.0966
0.0898
8.5784
–1.5570E–05
–9.2753
13.1436
–0.6665
4.5771
–0.0020
0.0294
0.0383
0.4675
0.4098
7.4913
1.2759E–04
–13.6595
10.8567
–0.4395
5.3002
–0.0000
0.0343
0.0428
0.1398
0.0045
8.3906
3.4402E–08
–13.6008
11.1812
–0.4709
5.2580
–0.0002
0.0340
0.0428
0.1467
0.0409
8.3825
2.8482E–06
–12.2355
11.8519
–0.3677
4.6116
–0.0001
0.0298
0.0387
0.4458
0.0142
7.5854
1.6525E–07
HelioClim–1 RPEmin%
RPEmax%
MPE
MAPE
MBE
MABE
RMSE
R2
TT
U95
GPI
–8.8906
11.3943
–0.3680
4.8063
0.0000
0.0313
0.0392
0.5920
0.0068
7.6779
–4.5816E–08
–13.6466
12.1245
–0.3351
5.7196
0.0008
0.0372
0.0463
0.3487
0.1356
9.0795
4.0944E–05
–10.3020
9.8321
–0.3585
4.8717
0.0000
0.0316
0.0393
0.5882
0.0040
7.7061
1.6329E–08
–9.3159
12.8458
–0.4539
5.3350
0.0000
0.0346
0.0434
0.4506
0.0067
8.5047
–7.5570E–08
–15.2999
10.4957
4.1193
7.8330
0.0287
0.0507
0.0980
0.2961
2.3556
18.3664
0.1112
–8.7121
12.6391
–0.3141
4.1810
0
0.0274
0.0366
0.6573
0.0004
7.1796
–1.112E–10
Tab.7  Statistical performances of new models
Fig.3  Measurements and estimates of eight models of typical months from 2000 to 2004
Fig.4  Measurements and estimates of six proposed models of typical months from 2000 to 2004
Model # Ranking– Station data Ranking– NASA-SSE data Ranking–HelioClim-1 data
MAPE RMSE R2 U95 MAPE RMSE R2 U95 MAPE RMSE R2 U95
1
2
3
4
5
6
7
8
9
10
11
12
13
14
9
4
12
7
10
8
14
13
1
11
3
6
5
2
9
4
12
7
10
8
14
13
1
11
3
6
5
2
9
4
12
7
13
8
10
11
1
14
3
6
5
2
9
4
11
7
10
8
13
14
1
12
3
6
5
2
1) 9
6
5
11
10
8
13
14
1
12
2
7
4
3
8
7
4
10
9
11
13
14
1
12
2
6
5
3
9
7
4
11
10
12
13
14
1
8
2
6
5
3
8
7
4
10
9
11
13
14
1
12
2
6
5
3
2) 7
4
11
9
6
8
12
14
2
10
3
5
13
1
7
5
11
9
6
8
12
13
2
10
3
4
14
1
8
5
12
11
6
10
9
7
2
13
3
4
14
1
7
5
10
9
6
8
12
13
2
11
3
4
14
1
Tab.8  Ranking of models according to each statistic for three meteorological databases
Color Meaning
This color indicates good models in the analysis of Tamanrasset station data
This color indicates good models in the analysis of NASA-SSE data
This color indicates good models in the analysis of HelioClim-1 data
This color indicates good models of Tamanrasset station data with good models of HelioClim-1 data (l with l)
This color indicates good models of Tamanrasset station data with good models of NASA-SSE data (l with l )
This color indicates good models of HelioClim-1 data with good models of NASA-SSE data (l with l )
Year Months Models
Mo.1 Mo.2 Mo.3 Mo.4 Mo.5 Mo.6 Mo.7 Mo.8 Mo.9 Mo.10 Mo.11 Mo.12 Mo.13 Mo.14
2000 1
2
3
4
5
6
7
8
9
10
11
12
2001 1
2
3
4
5
6
7
8
9
10
11
12
2002 1
2
3
4
5
6
7
8
9
10
11
12
2003 1
2
3
4
5
6
7
8
9
10
11
12
Total 0
0
0
0
0
1
7
0
6
1
0
1
1
0
1
2
1
0
3
4
8
5
4
3
13
14
4
6
4
0
3
11
5
2
0
2
1
1
8
4
9
9
Tab.9  Accuracy of models for computing monthly global solar radiation at Tamanrasset
Fig.5  Measured GSR on training and testing data using SHBM1, SHBM2, SHBM3, and SHBM4
Fig.6  Scatter plots of measured data against predicted monthly GSR by using SHBM1, SHBM2, SHBM3, and SHBM4 for the year 2004, at Tamanrasset in Algeria
Fig.7  Relative percentage error in different months throughout the five years for the hybrid model
Criteria Station NASA–SSE HelioClim 1
SHBM1 SHBM4 SHBM2 SHBM4 SHBM3 SHBM4
RPEmin/%
RPEmax/%
MPE
MAPE
MBE
MABE
RMSE
R2
TT
U95
GPI
–8.6158
7.2816
0.3191
2.4013
0.0034
0.0163
0.0259
0.8389
1.0048
10.4941
1.4814E–04
–7.9358
10.5034
–0.0259
2.4189
0.0010
0.0163
0.0258
0.8369
0.2901
10.5246
1.2547E–05
–0.0211
16.9619
–0.8007
2.5265
–0.0040
0.0160
0.0263
0.7997
1.1797
9.9659
–2.4820E–04
–4.3853
19.6796
–1.0477
2.6040
–0.0056
0.0165
0.0289
0.7558
1.5149
10.5177
–6.2849E–04
–6.5076
16.0603
–0.7935
2.2510
–0.0042
0.0142
0.0267
0.8407
1.2134
12.4400
–2.6670E–04
–5.4252
16.0603
–1.2016
2.4344
–0.0068
0.0154
0.0275
0.8364
1.9523
12.1291
–7.2156E–04
Tab.10  Regression coefficients of new smart hybrid models
G Monthly mean daily global solar radiation/(MJ?m–2)
G0 Monthly mean daily extraterrestrial radiation/(MJ?m–2)
Gsc Corrected solar constant/(MJ?m–2)
Gt Relative correction of the earth-sun distance
nj Number of day of year
S0 Day length/h
S Sunshine duration/h
T Temperature /°C
φ Latitude/rad
δs Declination solar/rad
ωs Sunset hour angle/rad
a, b, c and d Regression constants of first part
a0, …, a7, b1,…,b7, c1,…,c7 and ω Regression constants of second part
CSP Concentrated Solar Power
CPV Concentrating photovoltaic power systems
GSR Global Solar Radiation
NOM National Meteorological Office
RPE Relative percentage error
MPE Mean percent error
MAPE Mean absolute percent error
MBE Mean bias error
MABE Mean absolute bias error
RMSE Root mean square error
TT T–statistic test
SD Standard deviation
GPI Global performance indicator
Subscript
m measured
c calculated
s solar
max maximal
  
1 A Angstrom. Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation. Quarterly Journal of the Royal Meteorological Society, 1924, 50(210): 121–126
https://doi.org/10.1002/qj.49705021008
2 J A Prescott. Evaporation from water surface in relation to solar radiation. Transactions of the Royal Society of Australia, 1940, 64: 114–125
3 J Glover, J S J McCulloch. The empirical relation between solar radiation and hours of sunshine. Quarterly Journal of the Royal Meteorological Society, 1958, 84(360): 172–175
https://doi.org/10.1002/qj.49708436011
4 M Chegaar, A Chibani. Global solar radiation estimation in Algeria. Energy Conversion and Management, 2001, 42(8): 967–973
https://doi.org/10.1016/S0196–8904(00)00105–9
5 M Salmi, M C P Mialhe. A collection of models for the estimation of global solar radiation in Algeria. Energy Sources Part B Economics Planning & Policy, 2011, 6(2): 187–191
6 M Koussa, A Malek, M Haddadi. Statistical comparison of monthly mean hourly and daily diffuse and global solar irradiation models and a Simulink program development for various Algerian climates. Energy Conversion and Management, 2009, 50(5): 1227–1235
https://doi.org/10.1016/j.enconman.2009.01.035
7 M S Mecibah, T E Boukelia, R Tahtah, K Gairaa. Introducing the best model for estimation the monthly mean daily global solar radiation on a horizontal surface (case study: Algeria). Renewable & Sustainable Energy Reviews, 2014, 36(5): 194–202
https://doi.org/10.1016/j.rser.2014.04.054
8 T Khatib, A Mohamed, K Sopian. A review of solar energy modeling techniques. Renewable & Sustainable Energy Reviews, 2012, 16(5): 2864–2869
https://doi.org/10.1016/j.rser.2012.01.064
9 A Mellit, S A Kalogirou, S Shaari, H Salhi, A Hadj Arab. Methodology for predicting sequences of mean monthly clearness index and daily solar radiation data in remote areas: application for sizing a stand-alone PV system. Renewable Energy, 2008, 33(7): 1570–1590
https://doi.org/10.1016/j.renene.2007.08.006
10 R Yacef, A Mellit, S Belaid, Z Şen. New combined models for estimating daily global solar radiation from measured air temperature in semi-arid climates: application in Ghardaia, Algeria. Energy Conversion and Management, 2014, 79: 606–615
11 C Voyant, M Muselli, C Paoli, M L Nivet. Numerical weather prediction (NWP) and hybrid ARMA/ANN model to predict global radiation. Energy, 2012, 39(1): 341–355
https://doi.org/10.1016/j.energy.2012.01.006
12 Y Wu, J Z Wang. A novel hybrid model based on artificial neural networks for solar radiation prediction. Renewable Energy, 2016, 89: 268–284
https://doi.org/10.1016/j.renene.2015.11.070
13 Y S Güçlü, I Dabanli, E Sisman, Z Sen. HARmonic-LINear (HarLin) model for solar irradiation estimation. Renewable Energy, 2015, 81: 209–218
https://doi.org/10.1016/j.renene.2015.03.035
14 G E Hassan, M E Youssef, Z E Mohamed, M A Ali, A A Hanafy. New temperature-based models for predicting global solar radiation. Applied Energy, 2016, 179: 437–450
https://doi.org/10.1016/j.apenergy.2016.07.006
15 T R Ayodele, A S O Ogunjuyigbe, H Lund, M J Kaiser. Prediction of monthly average global solar radiation based on statistical distribution of clearness index. Energy, 2015, 90: 1733–1742
16 S Belaid, A Mellit. Prediction of daily and mean monthly global solar radiation using support vector machine in an arid climate. Energy Conversion and Management, 2016, 118: 105–118
https://doi.org/10.1016/j.enconman.2016.03.082
17 L Zou, L Wang, L Xia, A Lin, B Hu, H Zhu. Prediction and comparison of solar radiation using improved empirical models and Adaptive Neuro–Fuzzy Inference Systems. Renewable Energy, 2017, 106(5): 343–353
https://doi.org/10.1016/j.renene.2017.01.042
18 L Zou, L Wang, A Lin, H Zhu, Y Peng, Z Zhao. Estimation of global solar radiation using an artificial neural network based on an interpolation technique in southeast China. Journal of Atmospheric and Solar–Terrestrial Physics, 2016, 146: 110–122
https://doi.org/10.1016/j.jastp.2016.05.013
19 J A Duffie, W A Beckman, J Mcgowan. Solar engineering of thermal processes. Journal of Solar Energy Engineering, 1980, 116(1): 549
20 B G Akinoğlu, A A Ecevit. A further comparison and discussion of sunshine based models to estimate global solar radiation. Energy, 1990, 15(10): 865–872
https://doi.org/10.1016/0360–5442(90)90068–D
21 V Bahel, H Bakhsh, R Srinivasan. A correlation for estimation of global solar radiation. Energy, 1987, 12(2): 131–135
https://doi.org/10.1016/0360–5442(87)90117–4
22 D B Ampratwum, A S S Dorvlo. Estimation of solar radiation from the number of sunshine hours. Applied Energy, 1999, 63(3): 161–167
https://doi.org/10.1016/S0306–2619(99)00025–2
23 N A Elagib, M G Mansell. New approaches for estimating global solar radiation across Sudan. Energy Conversion and Management, 2000, 41(5): 419–434
https://doi.org/10.1016/S0196–8904(99)00123–5
24 K Bakirci. Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey. Energy, 2009, 34(4): 485–501
https://doi.org/10.1016/j.energy.2009.02.005
25 V Badescu, C A Gueymard, S Cheval, C Oprea, M Baciu, A Dumitrescu, F Iacobescu, I Milos, C Rada. Accuracy and sensitivity analysis for 54 models of computing hourly diffuse solar irradiation on clear sky. Theoretical and Applied Climatology, 2013, 111(3–4): 379–399
https://doi.org/10.1007/s00704–012–0667–1
26 O Behar, A Khellaf, K Mohammedi. Comparison of solar radiation models and their validation under Algerian climate–the case of direct irradiance. Energy Conversion and Management, 2015, 98(1): 236–251
https://doi.org/10.1016/j.enconman.2015.03.067
[1] Muyiwa S. ADARAMOLA. Distribution and temporal variability of the solar resource at a site in south-east Norway[J]. Front. Energy, 2016, 10(4): 375-381.
[2] O. S. OHUNAKIN, M. S. ADARAMOLA, O. M. OYEWOLA, R. O. FAGBENLE. Correlations for estimating solar radiation using sunshine hours and temperature measurement in Osogbo, Osun State, Nigeria[J]. Front Energ, 2013, 7(2): 214-222.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed