Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2020, Vol. 14 Issue (1) : 180-191    https://doi.org/10.1007/s11708-018-0537-3
RESEARCH ARTICLE
Robust nonlinear control via feedback linearization and Lyapunov theory for permanent magnet synchronous generator-based wind energy conversion system
Ridha CHEIKH1(), Arezki MENACER2, L. CHRIFI-ALAOUI3, Said DRID4
1. Department of Electrical Engineering LGEB Laboratory, Biskra University, Biskra 07000, Algeria; Laboratory of Innovative Technology (LTI), University of Picardie Jules Verne, IUT de l'Aisne 02880 Cuffies, France; Unité de Développement des Equipements Solaires, UDES, Centre de Développement des Energies Renouvelables, CDER 42415 Tipaza, Algeria
2. Department of Electrical Engineering LGEB Laboratory, Biskra University, Biskra 07000, Algeria
3. Laboratory of Innovative Technology (LTI), University of Picardie Jules Verne, IUT de l'Aisne, 02880 Cuffies, France
4. LSPIE Laboratory, Department of Electrical Engineering, University of Batna2, Rue Chahid Med El-Hadi Boukhlof 05000, Algeria
 Download: PDF(1284 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, the method for the nonlinear control design of a permanent magnet synchronous generator based-wind energy conversion system (WECS) is proposed in order to obtain robustness against disturbances and harvest a maximum power from a typical stochastic wind environment. The technique overcomes both the problem of nonlinearity and the uncertainty of the parameter compared to such classical control designs based on traditional control techniques. The method is based on the differential geometric feedback linearization technique (DGT) and the Lyapunov theory. The results obtained show the effectiveness and performance of the proposed approach.

Keywords permanent magnet synchronous generator      wind energy conversion system      stochastic      differential geometric      feedback linearization      maximum power point tracking      Lyapunov      robust control     
Corresponding Author(s): Ridha CHEIKH   
Just Accepted Date: 03 January 2018   Online First Date: 19 April 2018    Issue Date: 16 March 2020
 Cite this article:   
Ridha CHEIKH,Arezki MENACER,L. CHRIFI-ALAOUI, et al. Robust nonlinear control via feedback linearization and Lyapunov theory for permanent magnet synchronous generator-based wind energy conversion system[J]. Front. Energy, 2020, 14(1): 180-191.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-018-0537-3
https://academic.hep.com.cn/fie/EN/Y2020/V14/I1/180
Fig.1  Schema of the PMSG-based WECS studied
Fig.2  (d-q) model of PMSG
Fig.3  Simulation scheme of robust control
Fig.4  Tracking performance check at a realistic wind speed
Fig.5  Control signal and generator output in optimal operation
Fig.6  Robustness test at a sharp variation of the wind speed
Fig.7  Transitory disturbances
Fig.8  Robustness test at a sharp variation of the high speed shaft inertia
Fig.9  Power coefficient ( + zoom)
Fig.10  Tip speed ratio ( + zoom)
Fig.11  Control parameters evolution during disturbances
Fig.12  Comparison results
1 N Harrabi, M Souissi, A Aitouche, M Chabaane. Intelligent control of wind conversion system based on PMSG using T-S Fuzzy Scheme. International Journal of Renewable Energy Research, 2015, 5(4): 52–60
2 M E Emna, K Adel, M F Mimouni. The wind energy conversion system using PMSG controlled by vector control and SMC strategies. International Journal of Renewable Energy Research, 2013, 3(1): 41–50
3 I Munteanu, A I Bratcu, N A Cutululis, E Ceang Ă. Optimal Control of Wind Energy Systems: Toward a Global Approach. London: Springer, 2008
4 N Yadaiah, N V Ramana. Linearization of multi-machine power system: modeling and control—a survey. International Journal of Electrical Power and Energy Systems, 2007, 29(4): 297–311
https://doi.org/10.1016/j.ijepes.2006.06.011
5 S Ghasemi, A Tabesh, J Askari-Marnani. Application of fractional calculus theory to robust controller design for wind turbine generators. IEEE Transactions on Energy Conversion, 2014, 29(3): 780–787
https://doi.org/10.1109/TEC.2014.2321792
6 A Tabesh, R Iravani. On the application of the complex torque coefficients method to the analysis of torsional dynamics. IEEE Transactions on Energy Conversion, 2005, 20(2): 268–275
https://doi.org/10.1109/TEC.2005.847970
7 A Tabesh, R Iravani. Frequency response analysis of torsional dynamics. IEEE Transactions on Power Systems, 2004, 19(3): 1430–1437
https://doi.org/10.1109/TPWRS.2004.831684
8 M Farmad, S Farhangi, G B Gharehpetian, S Afsharnia. Nonlinear controller design for IPC using feedback linearization method. International Journal of Electrical Power & Energy Systems, 2013, 44(1): 778–785
https://doi.org/10.1016/j.ijepes.2012.08.036
9 B Boukhezzar, H Siguerdidjane. Nonlinear control with wind estimation of a DFIG variable speed wind turbine for power capture optimization. Energy Conversion and Management, 2009, 50(4): 885–892
https://doi.org/10.1016/j.enconman.2009.01.011
10 Z Shi, X Li, S Hu. Direct feedback linearization based control in variable air volume air-conditioning system. Procedia Physics, 2012, 24(Part B): 1248–1254
https://doi.org/10.1016/j.phpro.2012.02.187
11 M Bodson, J Chiasson. Differential-geometric methods for control of electric motors. International Journal of Robust and Nonlinear Control, 1998, 8(11): 923–954
https://doi.org/10.1002/(SICI)1099-1239(199809)8:11<923::AID-RNC369>3.0.CO;2-S
12 M R Tailor, P H Bhathawala. Linearization of nonlinear differential equation by Taylor’s series expansion and use of Jacobian linearization process. International Journal of Theoretical and Applied Science, 2011, 4(1): 36–38
13 H Jouybari-Moghaddam, S H Hosseinian, B Vahidi. Grid reconnection detection for synchronous distributed generators in stand-alone operation. International Transactions on Electrical Energy Systems, 2015, 25(1): 138–154
https://doi.org/10.1002/etep.1829
14 O Akhrif, F A Okou, L A Dessaint, R Champagne. Application of a multivariable feedback linearization scheme for rotor angle stability and voltage regulation of power systems. IEEE Transactions on Power Systems, 1999, 14(2): 620–628
https://doi.org/10.1109/59.761889
15 Q Lu, Y Z Sun. Nonlinear stabilizing control of multi machine systems. IEEE Transactions on Power Systems, 1988, 4(1): 36–38
https://doi.org/10.1109/59.32483
16 L R Hunt. R Su, G Meyer. Design for multi-input nonlinear systems in differential geometric control theory. Progress in Mathematics, 1982, 27:268–298
17 A Isodori. Nonlinear Control Systems. 3rd ed. Berlin: Springer-Verlag, 1995
18 M Beschi, M Berenguel, A Visioli, J L Guzmán, L J Yebra. Implementation of feedback linearization GPC control for a solar furnace. Journal of Process Control, 2013, 23(10): 1545–1554
https://doi.org/10.1016/j.jprocont.2013.02.002
19 X Yuan, Z Chen, Y Yuan, Y Huang, X Li, W Li. Sliding mode controller of hydraulic generator regulating system based on the input/output feedback linearization method. Mathematics and Computers in Simulation, 2016, 119(C): 18–34
https://doi.org/10.1016/j.matcom.2015.08.020
20 M A Mahboub, S Drid, M A Sid, R Cheikh. Robust direct power control based on the Lyapunov theory of a grid-connected brushless doubly fed induction generator. Frontiers in Energy, 2016, 10(3): 298–307
https://doi.org/10.1007/s11708-016-0411-0
21 H A Zarchi, R Arab Markadeh Gh, J Soltani. Direct torque and flux regulation of synchronous reluctance motor drives based on input–output feedback linearization. Energy Conversion and Management, 2010, 14(1): 71–80
https://doi.org/org/10.1016/j.enconman.2009.08.031
22 M Bouzidi, A Benaissa, S Barkat. Hybrid direct power/current control using feedback linearization of three-level four-leg voltage source shunt active power filter. International Journal of Electrical Power and Energy Systems, 2014, 61: 629–646
https://doi.org/10.1016/j.ijepes.2014.03.071
23 M Mehrasa, E Pouresmaeil, M F Akorede, B N Jorgensen, J P S Catalão. Multilevel converter control approach of active power filter for harmonics elimination in electric grids. Energy, 2015, 84: 722–731
https://doi.org/10.1016/j.energy.2015.03.038
24 M Alizadeh, S S Kojori. Augmenting effectiveness of control loops of a PMSG (permanent magnet synchronous generator) based wind energy conversion system by a virtually adaptive PI (proportional integral) controller. Energy, 2015, 91: 610–629
https://doi.org/10.1016/j.energy.2015.08.047
25 S Drid, M Tadjine, M S Nait-Said. Robust backstepping vector control for the doubly fed induction motor. IET Control Theory & Applications, 2007, 1(4): 861–868
https://doi.org/10.1049/iet-cta:20060053
26 M Mehrasa, E Pouresmaeil, S Zabihi, E M G Rodrigues, J P S Catalão. A control strategy for the stable operation of shunt active power filters in power grids. Energy, 2016, 96: 325–334
https://doi.org/10.1016/j.energy.2015.12.075
27 D C Phan, S Yamamoto. Rotor speed control of doubly fed induction generator wind turbines using adaptive maximum power point tracking. Energy, 2016, 111: 377–388
https://doi.org/10.1016/j.energy.2016.05.077
28 R Cheikh, A Menacer, S Drid. Robust control based on the Lyapunov theory of a grid-connected doubly fed induction generator. Frontiers in Energy, 2013, 7(2): 191–196
https://doi.org/10.1007/s11708-013-0245-y
29 F D Bianchi. Wind Turbine Control Systems: Principles, Modeling and Gain Scheduling Design. London: Springer-Verlag, 2007
30 H M Nguyen, D S Naidu. Direct fuzzy adaptive control for standalone wind energy conversion systems. In: Proceedings of the World Congress on Engineering and Computer Science, 2012, San Francisco, USA
31 C Nichita. Study and development of structures and digital control laws for the realization of 3 kW wind turbine simulator. Dissertation for the Doctoral Degree. France: Université du Havre, 1995 (in French)
32 E Welfonder, R Neifer, M Spanner. Development and experimental identification of dynamic models for wind turbines. Control Engineering Practice, 1997, 5(1): 63–73
https://doi.org/10.1016/S0967-0661(96)00208-0
33 J W Chapman, M D IIic, C A King, L Eng, H Kaufman. Stabilizing a multi machine power system via decentralized feedback linearizing excitation control. IEEE Transactions on Power Systems, 1993, 8(3): 830–839
https://doi.org/10.1109/59.260921
[1] Rahul SHARMA, Sathans SUHAG. Feedback linearization based control for weak grid connected PV system under normal and abnormal conditions[J]. Front. Energy, 2020, 14(2): 400-409.
[2] Xiaoqian SONG, Yong GENG, Ke LI, Xi ZHANG, Fei WU, Hengyu PAN, Yiqing ZHANG. Does environmental infrastructure investment contribute to emissions reduction? A case of China[J]. Front. Energy, 2020, 14(1): 57-70.
[3] Ali EL YAAKOUBI, Kamal ATTARI, Adel ASSELMAN, Abdelouahed DJEBLI. Novel power capture optimization based sensorless maximum power point tracking strategy and internal model controller for wind turbines systems driven SCIG[J]. Front. Energy, 2019, 13(4): 742-756.
[4] P. PADMAGIRISAN, V. SANKARANARAYANAN. Powertrain control of a solar photovoltaic-battery powered hybrid electric vehicle[J]. Front. Energy, 2019, 13(2): 296-306.
[5] S. Surender REDDY, Vuddanti SANDEEP, Chan-Mook JUNG. Review of stochastic optimization methods for smart grid[J]. Front. Energy, 2017, 11(2): 197-209.
[6] Himani,Ratna DAHIYA. Condition monitoring of a wind turbine generator using a standalone wind turbine emulator[J]. Front. Energy, 2016, 10(3): 286-297.
[7] M. Abdelbasset MAHBOUB,Said DRID,M. A. SID,Ridha CHEIKH. Robust direct power control based on the Lyapunov theory of a grid-connected brushless doubly fed induction generator[J]. Front. Energy, 2016, 10(3): 298-307.
[8] S. SURENDER REDDY,Jae Young PARK,Chan Mook JUNG. Optimal operation of microgrid using hybrid differential evolution and harmony search algorithm[J]. Front. Energy, 2016, 10(3): 355-362.
[9] Abdelhak DIDA,Djilani BENATTOUS. A complete modeling and simulation of DFIG based wind turbine system using fuzzy logic control[J]. Front. Energy, 2016, 10(2): 143-154.
[10] Louar FATEH,Ouari AHMED,Omeiri AMAR,Djellad ABDELHAK,Bouras LAKHDAR. Modeling and control of a permanent magnet synchronous generator dedicated to standalone wind energy conversion system[J]. Front. Energy, 2016, 10(2): 155-163.
[11] Kaouther ZAABOUTI,Ezzeddine BEN MOHAMED,Abdelfettah BOURI. Does oil price affect the value of firms? Evidence from Tunisian listed firms[J]. Front. Energy, 2016, 10(1): 1-13.
[12] Nabil KAHOUL,Mourad HOUABES,Ammar NEÇAIBIA. A comprehensive simulator for assessing the reliability of a photovoltaic panel peak power tracking system[J]. Front. Energy, 2015, 9(2): 170-179.
[13] Najet REBEI,Ali HMIDET,Rabiaa GAMMOUDI,Othman HASNAOUI. Implementation of photovoltaic water pumping system with MPPT controls[J]. Front. Energy, 2015, 9(2): 187-198.
[14] Ammar NEÇAIBIA,Samir LADACI,Abdelfatah CHAREF,Jean Jacques LOISEAU. Fractional order extremum seeking approach for maximum power point tracking of photovoltaic panels[J]. Front. Energy, 2015, 9(1): 43-53.
[15] Iraj AHMADIAN,Oveis ABEDINIA,Noradin GHADIMI. Fuzzy stochastic long-term model with consideration of uncertainties for deployment of distributed energy resources using interactive honey bee mating optimization[J]. Front. Energy, 2014, 8(4): 412-425.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed