Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2023, Vol. 17 Issue (1) : 149-164    https://doi.org/10.1007/s11708-020-0711-2
RESEARCH ARTICLE
Fault-tolerant control of an open-winding brushless doubly-fed wind power generator system with dual three-level converter
Shi JIN1(), Long SHI1, Sul ADEMI2, Yue ZHANG3, Fengge ZHANG1
1. School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China
2. Warwick Manufacturing Group, University of Warwick, Coventry CV4 7AL, Warwick, UK
3. School of Electrical Engineering, Shandong University, Jinan 250061, China
 Download: PDF(5270 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To improve the fault redundancy capability for the high reliability requirement of a brushless doubly-fed generation system applied to large offshore wind farms, the control winding of a brushless doubly-fed reluctance generator is designed as an open-winding structure. Consequently, the two ends of the control winding are connected via dual three-phase converters for the emerging open-winding structure. Therefore, a novel fault-tolerant control strategy based on the direct power control scheme is brought to focus in this paper. Based on the direct power control (DPC) strategy, the post-fault voltage vector selection method is explained in detail according to the fault types of the dual converters. The fault-tolerant control strategy proposed enables the open-winding brushless doubly-fed reluctance generator (BDFRG) system to operate normally in one, two, or three switches fault of the converter, simultaneously achieving power tracking control. The presented results verify the feasibility and validity of the scheme proposed.

Keywords open-winding      brushless doubly-fed reluctance generator (BDFRG)      direct power control      fault-tolerant control      multi-level converter      wind power     
Corresponding Author(s): Shi JIN   
Online First Date: 10 December 2020    Issue Date: 29 March 2023
 Cite this article:   
Shi JIN,Long SHI,Sul ADEMI, et al. Fault-tolerant control of an open-winding brushless doubly-fed wind power generator system with dual three-level converter[J]. Front. Energy, 2023, 17(1): 149-164.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-020-0711-2
https://academic.hep.com.cn/fie/EN/Y2023/V17/I1/149
Fig.1  Structural diagram of OW-BDFRG connected to dual 3LC.
Fig.2  Output voltage vectors.
Fig.3  OW-BDFRG fault-tolerant control system proposed based on DPC.
αβ-axis CW flux components Revised CW flux angle
λcα>0 λcβ>0 θc = θ
λcα<0 λcβ<0 θc = θ +π
λcα>0 λcβ<0 θc = θ +
λcα<0 λcβ>0 θc = θ +π
Tab.1  Revised CW flux angle
Fig.4  Synthesized space voltage vector distribution of MSC1 and MSC2 as Sa2 in short-circuit fault or Sa4 in open-circuit fault.
Fig.5  Schematic overview of power deviation comparison module.
Signal Sector
S1 S2 S3 I II III IV V VI
0 0 0 U13-6 U13-7 U14-7 U14-8 U14-9 U15-9
0 0 1 U18-5 U13-5 U13-6 U13-7 U14-7 U14-8
0 1 0 U17-1 U17-2 U17-3 U18-3 U18-4 U18-5
0 1 1 U17-3 U18-3 U18-4 U18-5 U13-5 U13-6
1 0 0 U14-7 U14-8 U14-9 U15-9 U15-10 U15-11
1 0 1 U14-9 U15-9 U15-10 U15-11 U16-11 U16-12
1 1 0 U16-12 U16-1 U17-1 U17-2 U17-3 U18-3
1 1 1 U15-11 U16-11 U16-12 U16-1 U17-1 U17-2
Signal Sector
S1 S2 S3 VII VIII IX X XI XII
0 0 0 U15-10 U15-11 U16-11 U16-12 U16-1 U17-1
0 0 1 U14-9 U15-9 U15-10 U15-11 U16-11 U161-2
0 1 0 U13-5 U13-6 U13-7 U14-7 U14-8 U14-9
0 1 1 U13-7 U14-7 U14-8 U14-9 U15-9 U15-10
1 0 0 U16-11 U16-12 U16-1 U17-1 U17-2 U17-3
1 0 1 U16-1 U17-1 U17-2 U17-3 U18-3 U18-4
1 1 0 U18-4 U18-5 U13-5 U13-6 U13-7 U14-7
1 1 1 U17-3 U18-3 U18-4 U18-5 U13-5 U13-6
Signal Sector
S1 S2 S3 XIII XIV XV XVI XVII XVIII
0 0 0 U17-2 U17-3 U18-3 U18-4 U18-5 U13-5
0 0 1 U16-1 U17-1 U17-2 U17-3 U18-3 U18-4
0 1 0 U15-9 U15-10 U15-11 U16-11 U16-12 U16-1
0 1 1 U15-11 U16-11 U16-12 U16-1 U17-1 U17-2
1 0 0 U18-3 U18-4 U18-5 U13-5 U13-6 U13-7
1 0 1 U18-5 U13-5 U13-6 U13-7 U14-7 U14-8
1 1 0 U14-8 U14-9 U15-9 U15-10 U15-11 U16-11
1 1 1 U13-7 U14-7 U14-8 U14-9 U15-9 U15-10
Tab.2  Switching voltage vector selection for short-circuited (Sa2) or open-circuited (Sa4)
Fig.6  Synthesized space voltage vector distribution of MSC1 and MSC2 as Sa3 in short-circuit fault or Sa1 in open-circuit fault.
Fig.7  Synthesized space voltage vector distribution of MSC1 and MSC2 as Sa2 in open-circuit fault.
Signal Sector
S1 S2 S3 I II III IV V VI
0 0 0 U0-6 U0-7 U0-8 U0-9 U0-10 U0-11
0 0 1 U0-5 U0-6 U0-7 U0-8 U0-9 U0-10
0 1 0 U0-2 U0-3 U0-4 U0-5 U0-6 U0-7
0 1 1 U0-3 U0-4 U0-5 U0-6 U0-7 U0-8
1 0 0 U0-8 U0-9 U0-10 U0-11 U0-12 U0-1
1 0 1 U0-9 U0-10 U0-11 U0-12 U0-1 U0-2
1 1 0 U0-12 U0-1 U0-2 U0-3 U0-4 U0-5
1 1 1 U0-11 U0-12 U0-1 U0-2 U0-3 U0-4
Signal Sector
S1 S2 S3 VII VIII IX X XI XII
0 0 0 U0-12 U0-1 U0-2 U0-3 U0-4 U0-5
0 0 1 U0-11 U0-12 U0-1 U0-2 U0-3 U0-4
0 1 0 U0-8 U0-9 U0-10 U0-11 U0-12 U0-1
0 1 1 U0-9 U0-10 U0-11 U0-12 U0-1 U0-2
1 0 0 U0-2 U0-3 U0-4 U0-5 U0-6 U0-7
1 0 1 U0-3 U0-4 U0-5 U0-6 U0-7 U0-8
1 1 0 U0-6 U0-7 U0-8 U0-9 U0-10 U0-11
1 1 1 U0-5 U0-6 U0-7 U0-8 U0-9 U0-10
Tab.3  Switching voltage vector selection for open-circuited (Sa2)
Fig.8  Synthesized space voltage vector distribution of MSC1 and MSC2 as Sa3 in open-circuit fault.
Fig.9  Synthesized space voltage vector distribution of MSC1 and MSC2 as Sa1 or Sa4 in short-circuit fault.
Fig.10  Synthesized space voltage vector distribution of MSC1 and MSC2 at the fault of two switches.
Signal Sector
S1 S2 I II III IV V VI
0 0 U16-6 U16-7 U16-8 U16-17 U16-0 U16-15
0 1 U16-15 U16-6 U16-7 U16-8 U16-17 U16-0
1 0 U16-8 U16-17 U16-0 U16-15 U16-6 U16-7
1 1 U16-17 U16-0 U16-15 U16-6 U16-7 U16-8
Tab.4  Voltage vector selection for the fault of Sa1 and Sb3
Signal Sector
S1 S2 I II III IV V VI
0 0 U18-0 U13-0 U14-0 U15-0 U16-0 U17-0
0 1 U17-0 U18-0 U13-0 U14-0 U15-0 U16-0
1 0 U14-0 U15-0 U16-0 U17-0 U18-0 U13-0
1 1 U15-0 U16-0 U17-0 U18-0 U13-0 U14-0
Tab.5  Voltage vector selection for the fault of Sa1 and Sd3
Signal Sector
S1 S2 I II III IV V VI
0 0 U16-6 U16-7 U16-8 U16-17 U15-14 U16-15
0 1 U16-15 U16-6 U16-7 U16-8 U16-17 U15-14
1 0 U16-8 U16-17 U15-14 U16-15 U16-6 U16-7
1 1 U16-17 U15-14 U16-15 U16-6 U16-7 U16-8
Tab.6  Voltage vector selection for the fault of Sa2 and Sb4
Signal Sector
S1 S2 I II III IV V VI
0 0 U17-16 U0-16 U15-16 U16-17 U7-16 U16-15
0 1 U16-15 U17-16 U0-16 U15-16 U16-17 U7-16
1 0 U15-16 U16-17 U7-16 U16-15 U17-16 U0-16
1 1 U16-17 U7-16 U16-15 U17-16 U0-16 U15-16
Tab.7  Voltage vector selection for the fault of Sa2 and Sd4
Fig.11  Synthesized space voltage vector distribution of MSC1 and MSC2 at the fault of three switches.
Fig.12  Transitional response from healthy mode (sub-synchronous operation) to fault mode (Sa2 open-circuit fault).
Fig.13  Transitional response from healthy mode (super-synchronous operation) to fault mode (Sa2 open-circuit fault).
Fig.14  Changes of given parameters and settings.
Fig.15  System results for Sa1 in open-circuit fault.
Fig.16  System results for Sa1 in short-circuit fault.
Fig.17  System results for Sa2 in open-circuit fault.
Fig.18  System results for Sa2 in short-circuit fault.
Fig.19  System results for Sa3 in open-circuit fault.
Fig.20  System results for Sa3 in short-circuit fault.
Fig.21  System results for Sa4 in open-circuit fault.
Fig.22  System results for Sa4 in short-circuit fault.
Fig.23  System results for Sa1 and Sb3 fault.
Fig.24  System results for Sa1 and Sd3 fault.
Fig.25  System results for Sa2 and Sb4 fault.
Fig.26  System results for Sa2 and Sd4 fault.
Fig.27  Sector where the CW flux linkage is located when Table 2 is used.
Fig.28  Sector where the CW flux linkage is located when Table 3 is used.
Fig.29  Sector where the CW flux linkage is located when Tables 4–7 are used.
1 H Chaal, M Jovanovic. Toward a generic torque and reactive power controller for doubly fed machines. IEEE Transactions on Power Electronics, 2012, 27(1): 113–121
https://doi.org/10.1109/TPEL.2011.2160731
2 H Chaal, M Jovanovic. Practical implementation of sensorless torque and reactive power control of doubly fed machines. IEEE Transactions on Industrial Electronics, 2012, 59(6): 2645–2653
https://doi.org/10.1109/TIE.2011.2161065
3 M Cheng, Y Zhu. The state of the art of wind energy conversion systems and technologies: a review. Energy Conversion and Management, 2014, 88: 332–347
https://doi.org/10.1016/j.enconman.2014.08.037
4 A B Attya, S Ademi, M Jovanović, et al. Frequency support using doubly fed induction and reluctance wind turbine generators. International Journal of Electrical Power & Energy Systems, 2018, 101: 403–414
https://doi.org/10.1016/j.ijepes.2018.04.007
5 A Zhang, X Wang, W Jia, et al. Indirect stator-quantities control for the brushless doubly fed induction machine. IEEE Transactions on Power Electronics, 2014, 29(3): 1392–1401
https://doi.org/10.1109/TPEL.2013.2260870
6 R Prasad, M Mulla. A novel position-sensorless algorithm for field-oriented control of DFIG with reduced current sensors. IEEE Transactions on Sustainable Energy, 2019, 10(3): 1098–1108
https://doi.org/10.1109/TSTE.2018.2860993
7 M Cheng, P Han, G Buja, et al. Emerging multiport electrical machines and systems: past developments, current challenges, and future prospects. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5422–5435
https://doi.org/10.1109/TIE.2017.2777388
8 U Choi, J Lee, F Blaabjerg, et al. Open-circuit fault diagnosis and fault-tolerant control for a grid-connected NPC inverter. IEEE Transactions on Power Electronics, 2016, 31(10): 7234–7247
https://doi.org/10.1109/TPEL.2015.2510224
9 S Yang, A Bryant, P Mawby, et al. An industry-based survey of reliability in power electronic converters. IEEE Transactions on Industry Applications, 2011, 47(3): 1441–1451
https://doi.org/10.1109/TIA.2011.2124436
10 B Lu, S Sharma. A literature review of IGBT fault diagnostic and protection methods for power inverters. IEEE Transactions on Industry Applications, 2009, 45(5): 1770–1777
https://doi.org/10.1109/TIA.2009.2027535
11 S Kwak. Fault-tolerant structure and modulation strategies with fault detection method for matrix converters. IEEE Transactions on Power Electronics, 2010, 25(5): 1201–1210
https://doi.org/10.1109/TPEL.2009.2040001
12 K D Hoang, Z Q Zhu. Comparative performance study of alternate fault-tolerant inverter configurations for direct torque control-based three phase PM BLAC drives under single-phase open-circuit fault. In: 8th IET International Conference on Power Electronics, Machines and Drives (PEMD 2016), Glasgow, UK, 2016
13 B A Welchko, T A Lipo, T M Jahns, et al. Fault tolerant three-phase AC motor drive topologies: a comparison of features, cost, and limitations. IEEE Transactions on Power Electronics, 2004, 19(4): 1108–1116
https://doi.org/10.1109/TPEL.2004.830074
14 M Shahbazi, S Saadate, P Poure, et al. Open-circuit switch fault tolerant wind energy conversion system based on six/five-leg reconfigurable converter. Electric Power Systems Research, 2016, 137: 104–112
https://doi.org/10.1016/j.epsr.2016.04.004
15 X Li, S Dusmez, B Akin, et al. A new active fault-tolerant SVPWM strategy for single-phase faults in three-phase multilevel converters. IEEE Transactions on Industrial Electronics, 2014, 62(6): 3955–3965
https://doi.org/10.1109/TIE.2014.2364555
16 J Restrepo, A Berzoy, A Ginart, et al. Switching strategies for fault tolerant operation of single DC–link dual converters. IEEE Transactions on Power Electronics, 2012, 27(2): 509–518
https://doi.org/10.1109/TPEL.2011.2161639
17 Z Wang, J Chen, M Cheng, et al. Fault-tolerant control of paralleled-voltage-source-inverter-fed PMSM drives. IEEE Transactions on Industrial Electronics, 2015, 62(8): 4749–4760
https://doi.org/10.1109/TIE.2015.2403795
18 S Chowdhury, P Wheeler, C Patel, et al. A multilevel converter with a floating bridge for open-end winding motor drive applications. IEEE Transactions on Industry Applications, 2016, 63(9): 5366–5375
https://doi.org/10.1109/TIE.2016.2561265
19 Q An, J Liu, Z Peng, et al. Dual-space vector control of open-end winding permanent magnet synchronous motor drive fed by dual inverter. IEEE Transactions on Power Electronics, 2016, 31(12): 8329–8342
https://doi.org/10.1109/TPEL.2016.2520999
20 S Jin, L Shi, L Zhu, et al. Dual two-level converters based on direct power control for an open-winding brushless doubly-fed reluctance generator. IEEE Transactions on Industry Applications, 2017, 53(4): 3898–3906
https://doi.org/10.1109/TIA.2017.2693959
21 H Chaal, M Jovanovic. Power control of brushless doubly-fed reluctance drive and generator systems. Renewable Energy, 2012, 37(1): 419–425
https://doi.org/10.1016/j.renene.2011.06.011
22 W Zhao, B Wu, Q Zhu. Fault-tolerant direct thrust force control for a dual inverter fed open-end winding linear vernier permanent-magnet motor using improved SVPWM. IEEE Transactions on Industrial Electronics, 2018, 65(9): 7458–7467
https://doi.org/10.1109/TIE.2018.2795557
[1] Shenghu LI. Improvement to observability measures of LFO modes in power systems with DFIGs[J]. Front. Energy, 2021, 15(2): 539-549.
[2] Alireza HEIDARI, Ali ESMAEEL NEZHAD, Ahmad TAVAKOLI, Navid REZAEI, Foad H. GANDOMAN, Mohammad Reza MIVEH, Abdollah AHMADI, Majid MALEKPOUR. A comprehensive review of renewable energy resources for electricity generation in Australia[J]. Front. Energy, 2020, 14(3): 510-529.
[3] M. A. SALAM, M. G. YAZDANI, Q. M. RAHMAN, Dk NURUL, S. F. MEI, Syeed HASAN. Investigation of wind energy potentials in Brunei Darussalam[J]. Front. Energy, 2019, 13(4): 731-741.
[4] Jiang LI, Guodong LIU, Shuo ZHANG. Smoothing ramp events in wind farm based on dynamic programming in energy internet[J]. Front. Energy, 2018, 12(4): 550-559.
[5] Zhao WANG, Weisheng WANG, Bo WANG. Regional wind power forecasting model with NWP grid data optimized[J]. Front. Energy, 2017, 11(2): 175-183.
[6] Y. K. BHATESHVAR, H. D. MATHUR, H. SIGUERDIDJANE. Impact of wind power generating system integration on frequency stabilization in multi-area power system with fuzzy logic controller in deregulated environment[J]. Front. Energy, 2015, 9(1): 7-21.
[7] Azzouz TAMAARAT,Abdelhamid BENAKCHA. Performance of PI controller for control of active and reactive power in DFIG operating in a grid-connected variable speed wind energy conversion system[J]. Front. Energy, 2014, 8(3): 371-378.
[8] O. D. OHIJEAGBON, Oluseyi. O AJAYI. Potential and economic viability of standalone hybrid systems for a rural community of Sokoto, North-west Nigeria[J]. Front. Energy, 2014, 8(2): 145-159.
[9] Hicham SERHOUD, Djilani BENATTOUS. Simulation of grid connection and maximum power point tracking control of brushless doubly-fed generator in wind power system[J]. Front Energ, 2013, 7(3): 380-387.
[10] Eric MARTINOT. Renewable power for China: Past, present, and future[J]. Front. Energy, 2010, 4(3): 287-294.
[11] Weidou NI , Zhen CHEN , Zheng LI , Jian GAO , . How to make the production of methanol/DME &#8220;GREENER&#8221;&#8212;Integration of wind power with modern coal chemical industry&#8212;[J]. Front. Energy, 2009, 3(1): 94-98.
[12] BAO Nengsheng, MA Xiuqian, NI Weidou. Investigation on the integral output power model of a large-scale wind farm[J]. Front. Energy, 2007, 1(1): 67-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed