Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2022, Vol. 16 Issue (2) : 187-223    https://doi.org/10.1007/s11708-021-0722-7
REVIEW ARTICLE
A comprehensive review and analysis of solar forecasting techniques
Pardeep SINGLA1(), Manoj DUHAN1, Sumit SAROHA2
1. Department of ECE, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat 131039, India
2. Department of Printing Technology (Electrical Engineering), Guru Jambheshwar University of Science and Technology, Hisar 125001, India
 Download: PDF(834 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In the last two decades, renewable energy has been paid immeasurable attention to toward the attainment of electricity requirements for domestic, industrial, and agriculture sectors. Solar forecasting plays a vital role in smooth operation, scheduling, and balancing of electricity production by standalone PV plants as well as grid interconnected solar PV plants. Numerous models and techniques have been developed in short, mid and long-term solar forecasting. This paper analyzes some of the potential solar forecasting models based on various methodologies discussed in literature, by mainly focusing on investigating the influence of meteorological variables, time horizon, climatic zone, pre-processing techniques, air pollution, and sample size on the complexity and accuracy of the model. To make the paper reader-friendly, it presents all-important parameters and findings of the models revealed from different studies in a tabular mode having the year of publication, time resolution, input parameters, forecasted parameters, error metrics, and performance. The literature studied showed that ANN-based models outperform the others due to their nonlinear complex problem-solving capabilities. Their accuracy can be further improved by hybridization of the two models or by performing pre-processing on the input data. Besides, it also discusses the diverse key constituents that affect the accuracy of a model. It has been observed that the proper selection of training and testing period along with the correlated dependent variables also enhances the accuracy of the model.

Keywords forecasting techniques      hybrid models      neural network      solar forecasting      error metric      support vector machine (SVM)     
Corresponding Author(s): Pardeep SINGLA   
Online First Date: 03 March 2021    Issue Date: 25 May 2022
 Cite this article:   
Pardeep SINGLA,Manoj DUHAN,Sumit SAROHA. A comprehensive review and analysis of solar forecasting techniques[J]. Front. Energy, 2022, 16(2): 187-223.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-021-0722-7
https://academic.hep.com.cn/fie/EN/Y2022/V16/I2/187
Fig.1  Installed solar PV capacity (MW) of five countries from 2015 to 2018 (adapted with permission from Refs. [7,10,1315]).
Fig.2  Types of forecasting techniques based on data processed and their structure.
Fig.3  Hierarchy of ARIMA for forecasting (adapted with permission from Ref. [6]).
Fig.4  Markov process for three states (adapted with permission from Ref. [6]).
Fig.5  Architecture of ANN (adapted with permission from Ref. [32]).
Fig.6  Basic structure of SVM (adapted from Ref. [95] under CC BY).
Fig.7  Architecture of deep learning.
Ref. YOP Region/place Lat/Long Time ahead Training period Testing period Input variable Output variable Technique Error parameters Error/%
[76] 2005 Turkey 36°/42° 4 years,
train 9 station
3 station Lat, Long, Al, M, MSD, Tm SR ANN with SCG, CGP, LM MAPE, R2 MAPE<6.78%, R2 = 99.7768%
[113] 2005 Helwan, Egypt 1 year 1 year RH, T, WS, WD,
CC
UV, IR, GI ANN RMSE RMSE: IR= 5.02%, UR= 7.46%, GI= 3.97%
[90] 2009 India: Ahmadabad, Nagpur, Mumbai, Vishakhapatnam 10 stations in India 10 stations in India Lat, Long, Al, t,
M, T, RH, R, WS, LW
CI ANN-FFBP RMSE RMSE= 4.5%
[32] 2010 Dezful, Iran 32°.16′N 48°.25 E 24 h 1398 d 214 d DATm, RH, SD, E WS DGSR MLP, RBF MAPE MAPE= 5.21%
[77] 2011 Mediterrane, Anatolia, Turkey 36°.43′ –37°.46′ /30°.17′ –36°.55′ 1 year 1 year Lat, Long, Al, M, CC, Ta, Ha, WSa, SD SR ANN R2, RMSE RMSE= 0.0358, R2 = 0.9974
[88] 2012 Central Queensland, Australia 23°.38′/150°.58 3 h 4 m 1 m AT, WS, WD, SR, RH, R, VWSP, WS, WD, WG, E, WE, SE ANN R R = 0.96399
[89] 2012 Istanbul - 3–40 min 1 m 1 m SI, AT,CT PVo ANN-LMBP RMSE,R2 Stable forecast 3–40 min, Augest,
stable 5–35 min forecast, April
[98] 2012 South China 1 d Historic 10 m Weather+ Historic Solar PV power SVM RMSE, MRE RMSE= 2.10 MW, MRE= 8.64%
[128] 2012 China 24–72 h 80% of data 20% of data 3rd order difference of SI, Tm day, normalized discrete difference, Ta SR ANN with statistical parameter selection RMSE, MAPE, MABE MAPE= 9.09%–26.7%, RMSE= 42.29–84.65 (W/m2), MABE= 31.10–64.6 (W/m2)
[97] 2013 US 1–6 h 1 year 1 year Meteorological variables Solar power SVM, RBFNN
AR
MAE, MAPE, R2 SVM>RBFNN>AR
[55] 2013 Gurgaon, India 750 d 165 d AT, RH, AP, WS, WD, SR SR HMM and GFM RMSE, MAPE RMSE= 7.9124, MAPE= 3.4255
[116] 2013 NEA, Singapore 1 h–1 d 17280 data 4320 data T, SKI, SR SR Fuzzy and ANN MAPE MAPE= 6.03%–9.65%
[145] 2013 Algeria, Oran Hourly 2.6 years 6 m Time series GSR k-means cluster and NAR RMSE, nRMSE RMSE= 60.24 (W/m2), nRMSE= 0.1985
[68] 2014 Owabi, Ghana, 6°.45′ N/1°.43′ W 11 m Monthly T, RH, AP, R, DR, SMP, SHF, WS GSR Sunshine and air temperature based empirical model MBE, MPE, RMSE Sunshine: MPE= 0.0585%, MBE= -0.0102 (MJ/(m2·d)), RMSE= 0.0338 (MJ/(m2·d))
Air temp: MPE= 1.707%, MBE= –2.973(MJ/(m2·d)), RMSE= 0.985(MJ/(m2·d))
[47] 2015 1–3 step ahead Time series SR ARMA, ARIMA with LLF MAPE ARMA_MAPE= 71.67%, ARIMA_MAPE= 32.07%
[49] 2015 Spain 38°.67′ N/4°.15′ W 1–24 h 1 year Monthly Aggregated hourly SR DHI and DNI DHR rMBE, rRMSE GHI: rMBE= 0.21, rRMSE= 29.66
DNI: rMBE= 3.82, rRMSE= 46.79
[62] 2015 1 h to 1 d 1 year 1 year NWP, meteorological SI Multi/step linear regression RMSE, MAE MOS-MLR>MOSP5
[86] 2016 Florida 15 m, 1h, 24 h t, time lag, PM energy MT PV energy ANN and SVR RMSE, MAE, MBE ANN>SVR
[87] 2016 Tehran, Iran 51°.23 N/35°.44′ E 1 year 1 year Molde-1: Tmax, Tmin, RH, WS, PM, Model-2: Tmax, Tmin, RH, WS, GSR ANN MAPE, RMSE, R2 MAPE= 3.13, RMSE= 0.077, R2 = 0.97
[96] 2016 Malaga, Spain 36°.42′ N/4°.28 W 4 years 4 years AT, RH, AP, GHI GSR DT and ANN, DT and SVM, -R, SVM-C and SVM-R, SVM-C and ANN rMAE, RMSE, S% rMAE= 15.2%, RMSE= 22.9%, S= 43.9%
[99] 2016 North East Asia 60 min 4 years Satellite image SI AVM+ SVM RMSE, MRE, R2 RMSE= 44.1390 (W/m2), MRE= 7.7329%, R2 = 0.9420
[56] 2016 Nakhon Pathom station, Thailand 13°.81′ N/100°.04′ E Hourly 3 years 1 year GSR, DSR,
Al, CI, ESR
GSR Markov transition matrix RMSD Second order>First order
[69] 2016 Ibadan 7°.4 N/3°.5′ E 9 years Daily and monthly daily avg. GSR
daily SD, daily avg. Tmax, daily avg.Tmin
Daily and monthly vg. GSR, Angstrom Prescott model, Garcia model, Hargreaves-Sammani model RMSE, MAE, MAPE, R2 Daily avg. GSR
RMSE= 2.70 (MJ/(m2·d)), MAE= 1.86(MJ/(m2·d)), MAPE= 9.34%, R2 = 0.68
Monthly avg. GSR
RMSE= 0.0909 (MJ/(m2·d)), MAE= 0.0733(MJ/(m2·d)), MAPE= 0.5174%, R2 = 0.9974
[119] 2016 Gran Canaria Island
(Spain)
28°.75 /–16° 1 to 6 h 1 year Meteorological data, NWP,
Satellite data
GHI ANN, ANN and SATANN and ECMWF, ANN and ECMWF and NWP RMSE, % skill RMSE= 83.58%–147.88%, %S= 9.67%–35.19%
[120] 2016 Kerman, Iran 25°.55–32°/
30°.29–57°.06
5 years 2 years CI GHI SVM and WT MABE, RMSE, R MABE= 0.5757 (MJ/m2), RMSE= 0.69 (MJ/m2), R = 0.96
[75] 2017 Kuwait: Wafra,
Kuwait, International Airport, Abdaly, Rabyah, Sulaibiya
3 years 1 year Time series data SR Gradient descent algo, LM algo MAPE GDE MAPE= 86.3, LM MAPE= 85.6
[79] 2017 10 cities, India Hourly 90% of 2 years 10% of 2 years Tmin, Tmax, Tavg, WS, RH, P, ESR, SD DGSR ANN and unity feedback, RBF and LR MAPE Average MAPE= 14.84%–16.32%
[83] 2017 Singapore 1°.34′ N,
103°.96′ E
3 m 1 m T, DP, WD, WS, WG, irradiance (clear sky), error (BP) SI FF-ANN, BP-ANN, Fuzzy preprocessing, Error correction of past 5 min output MAPE ANN and Fuzzy and error correction= 29.6%, ANN and Fuzzy= 43.1%, ANN= 46.3%
[84] 2017 Italy: Lombardy,
Calabria, Sicily
72 h ahead 2 years 3 m to 1 year GHI, CC, T, Azimuth Elevation Solar power Analog ensemble and ANN RMSE RMSE= 8.09%
[85] 2017 9 plants in Taipei, China 60 min 4 h with
5 min interval
Past GSI, T, RH,WS, WD GSI K-NN and ANN RMSE, MABE RMSE= 242 (W/m2), MABE= 42 (W/m2)
[50] 2017 9 cities in Indian NA Hourly, Montly data sets of 7 cities data set of 2 cities SD, API, Lat/Long DGSR` Linear, quadratic, explinear, expquadratic regression RMSE, MAPE, r RMSE= 3.08 (W/m2), MAPE= 0.1342%, R = 0.3790
[57] 2017 Afyonkarahisarand Antalya, Turkey Hourly 75% of 4 years 25% of 4 years Time series GSR Mycielski-Markov RMSE, MABE, R2 RMSE= 13.49(W/m2), MABE= 10.7554%, R2 = 0.8320
[58] 2017 Fort Peck, Montana, desert Rock, Navada, Bondville, Illinois
Penn State Univ, Pensylvania
48°.30 N/105°.10 W
36°.62 N/116°.01 W
40°.05 N/88°.37 W
40°.72 N/77°.93 W
Seasonal Historical data TSRY Discrete Markov chain % average error Max % Error= 10%, Min % Error= 6%
[70] 2017 Adrar, Ghardaïa, Tamanrasset, Algeria 27°.88/–0.27
32°.36/ 3°.81
22°.78/ 5°.51
3 years 3 years SD, AT, RH DSR Sunshine based empirical, CI based sunshine and clearness MPE, RMSE, U95, R, t-statistics Sunshine and clearness index>All
[144] 2017 Le-Raizet, France 16°.26 N/ 61°.5 W 1 h 1 year 1 year Time series GSR WD-hybrid,
EEMD-hybrid,
EMD-hybrid
rRMSE, rMBE, rMAE rRMSE= 3.80%–8.31%, rMBE= –2.06%–0.02%, rMAE= 2.76%–6.64%
[28] 2018 12 locations, Iran 1 d ahead 70% 30% M, atmosphere insolation, AP, AT, Tmax, Tmin, RH, WS, Lat, long DGSR GMDH, ANFIS, ANFIS-PSO, ANFIS-GA, ANFIS-ACO RMSE, MAPE GMDH>MLFFNN>ANFIS-PSO>ANFIS-GA>ANFIS-ACO>ANFIS
[81] 2018 Data Euskalmet Six years Seasonal SI, AP, RH, AT SI ANN with delays RMSE RMSE= 0.03%–1.64,
[41] 2018 UMASS Trace Repository 5 min to 2 days 2 years 2 m T, RH, DP, WS, P SI TMLM and GABP and
ALHM
MAPE MAPE= 8.66%
[100] 2018 Beijing, China 1 d 2 years 1 year MSD, Tmax, Tmin, PM2.5, PM10, SO2, NO2, CO, O3, AQI GSR, DSR SVM RMSE_DSR, RMSE_GSR RMSE_DSR= 1.432 MJ/(m2·d), RMSE_GSR= 2.947 MJ/(m2·d)
[63] 2018 Singapore 2°/140° 1 d 2 years 1 year NWP SI NWP and PCA RMSE, rMSE, MAE, rMAE, MBE, rMBE RMSE= 169 (W·m2), rRMSE= 35.7%, MAE= 193 (W/m2), rMAE= 28.1%
MBE= –14 (W/m2), rMBE= 2.9%
[105] 2018 Santiago, Cape Verde NA 1 d 2 years and 10 years 6 m, 1 year M, day, t, T, DP, RH, V, WS GHI LSTM RMSE RMSE= 76.245 (W/m2)
[107] 2018 Global Energy Forecasting Competiton 2014 and ECMRWF 2 years and 8 d 1 m and 10 d Time series, T, CC TCLW, IW, SP, RH, UWC, SSRD, STRD, GHI, P PV power k-means and GRU RMSEavg RMSEavg = 0.036
[110] 2018 Kalipi, Andhra-Pradesh, India 13°.99′ / 77°.45′ 1 year Day GHI, DHI, T, P, WS, AP, SD, RH, Surface Temp. PV power ANN
ANFIS
% Error ANN>ANFIS
[122] 2018 Tamanrasset (Algeria), Madina(Saudi Arabia) 22°.79′/5°.52′
24°.55′/39°.70′
5 min to 3 h ahead Tamanrassrt
11 years, Madina 1 year
Time series GHI WMIM and
ELM
MAPE MAPE= 7.4%–10.77
[127] 2018 Ghardaia, Algeria 32°.6′ /3°.8′ 10 steps 1 year 1.5 year D, Tmin, Tmax, RH, P, Max. elevation, declination angle, day duration, SD, sunshine ratio GHR, DHR WGPR-CFA, WGPR-PFA RMSE, r2 RMSEGHR= 3.18 (MJ/m2), r2GHR= 85.85%, RMSEDHR= 5.23 (MJ/m2), r2DHR= 56.21%
[130] 2018 Syracuse Monthly 1 year Monthly Sun angle, SI, T, visibility, CC, RH Solar power EMD and PSO and SVR nRME MAPE Avg nRMSE= 0.95%, Avg MAPE= 14.55%
[132] 2018 Beijing, China 1 d 1 year Seasonal SR, T, CC, RH, AP, WS, SCADA Solar PV Power Wavelet-PSO-SVM MAPE MAPE= 4.22%
[135] 2018 3 PV site in Australia 149°.06′E/35°.16′ S 2 years CC, CW, IC, SI, P, AT, WS, RH AP Ramp events RF with
loss functions
NA NA
[143] 2018 Colorado 39°.74′/105°.1′ 1 h 75% of 1 year 25% of 1 year GHI, GHIclr, CSI, DNI, DHI, T, RH, AP, WS, WD GHI OCCUR and SVM and M3 nRMSE, nMAE UC-M3>UC-GBM
[19] 2019 AUTH, Central Macedonia, AMIN, West Macedonia 40°.37′ N/22°.57′ E
40°.36′ N/ 21°.39′ E
d 1 year Daily Tmax, Tmin, Tavg, Radiation, TD, TD, RHavg Rs Empirical, ANN, MLR RMSE, R For AUTH, RMSE= 3.344 MJ/(m2·d), R= 1; For AMIN, RMSE= 3.166 MJ/(m2·d), R= 1
[78] 2019 Atlanta
New York
Hawaii
33°.77′/84°.98′
43°.13′/75°.90′
19°.33′/155°.58′
1 h to 1d 3 year 1 year GHI, CSK, GHI, CC, DP, PW, RH, SZA, WS, WD, T GHI LSTM RMSE, MAE, R2 RMSE= 41.37–66.69 (W/m2), MAE= 30.19–46.04 (W/m2), R2 = 0.95–0.97
[80] 2019 Algiers 36°.8′ N/3°.170′ E 5 min 2 years Monthly T, RH, WS,WD, P, SD, AP, SZA, ESI GHI, DNI ANN RMSE, nRME, MAE, nMAE RMSE= 126.65–157.2 (Wh/m2), nRMSE= 28.08%–34.85%, MAE= 112.60–118.59 (Wh/m2), nMAE= 24.96%–26.28%
[44] 2019 Reese Research Center, Lubbock, TX 1 year 30 days Time series Daily solar energy ARIMA MAPE MAPE= 17.70%
[45] 2019 Seoul, South Korea 37°.34′ N/126°.5′ E Monthly and daily 3 years Time series Daily and monthly SR SARIMA RMSE and R2 Daily: RMSE= 104.26, R2 = 68%;
Monthly: RMSE= 33.18, R2 = 79%
[46] 2019 Jamia Millia Islamia, New Delhi 28°.56′ N/77°.28′ E Monthly 34 years Monthly Time series SR SARIMA MPE MPE= 1.402
[48] 2019 Mauritius 20°.3′ S/57°.6′ E Monthly 29 years 10 years SD, T, ER, RH GSR Sayigh Universal formula MAPE, RMSE MAPE= 5.07%–7.49%, RMSE= 0.96–1.57 MJ/(m2·d)
[101] 2019 6 sites in China Daily 70% of 3 years 30% of 3 years Tm, Tmax, Tmin, AP, RH, SD, N WS, AQI DGSR SVR RMSE RMSE= 0.00036–0.1910 MJ/m2
[54] 2019 Naresuan University, Thailand 1 h 6 m GSR, AT, WS PV power HMM, GA-HMM MAPE, nRME nRMSE= 2.33%, MAPE= 6.27%
[64] 2019 Netherland Hourly 2 year Seasonal T, RH, SR, CC, R, aerosols, CSK, CI, lat, long, VIAE, VIO Deterministic and Proba-bilistic forecast Parametric regression, Quantile regression, Quantile regression, RF, GBDT RMSE, RMSE_SS, CRPSS
[67] 2019 Amravati, Maharashtra 20°.93′/77°.77′ 5 years DGSR, ESR, SD, SDmax monthly average DSI, T, RH GSR, DSR Empirical model MAPE, RMSE, R2 GSR: MAPE= 2.50%, RMSE= 0.58 (MJ/m2), R2 = 0.98; MDR: MAPE= 13.506%, RMSE= 1.11 (MJ/m2), R2 = 0.94
[108] 2019 Nanao, Japan NA 90% of 8735 data points 10% of 8735 data points GHI, T, WS, WD, Ep, Ei Solar PV power GRU nRMSE nRMSE= 9.64%
[111] 2019 University of Queensland,
Australia
1 d 1 year Seasonal PV power, SI, WS, T PV power WT and PSO and NNE Error-variance Seasonal variations, 0.1723–0.3103
[125] 2019 Kunming, China; Denver, USA 24°.51′/102°.51′
39°.44′/105°.1′
Monthly 2 years 1 year Time series GHI WT and ENN RMSE, nRME, FS RMSE= 25.83 (W/m2), nRMSE= 14.17%, FS= 0.7590
[126] 2019 NSRDB W97°/N33°W107°/N143° 3 h ahead 1 year Monthly GHI, SZA, T, DP, RH, PWWD, WS, GHI ConvGRU-VB RMSE, MEA, NSE RMSE= 69.5, MEA= 34.8, NSE= 0.929
[112] 2019 Odeillo, France 42°.29′ /2°.01′ 1 to 6 h ahead 80% of 3 years 20% of 3 year SR time series GHI, BNI, DHI SP, ANN, RF nRME, RMSE, MAE, nMAE nRMSE_GHI= 19.65%–27.78%, nRMSE_BNI= 34.11%–49.08%, nRMSE_DHI= 35.08%–49.14%
[114] 2019 Favignana Island, Italy 37°.55′/12°.19′ Monthly 1 year Seasonal WS and solar data Wind power, solar power GMDHNNFOA MAPE, AME, RMSE, R2 MAPE= 1.770%, MAE= 0.015, RMSE= –0.017868
[117] 2019 5 cites in China 1 h to 24 h 1 year Monthly Time series DSR DFT-PCA-Elman RMSE, MAE RMSE= 72.95–191.33, MAE= 39.46–118.67
[118] 2019 Toledo, Spain 39°.53′ N/4°.02′ N Hourly 80% of each month 20% of each month Reflectivity, CSK, CI GSR ELM RMSE RMSE= 60.60 W/m2
[129] 2019 GEFcom2014 1 to 3 step ahead 3 m 10% of data t, RH, SP, CC, WS, P, T, R, SR PV power PCA and k-means and HGWO and RF RMSE, MAE RMSE= 8.88%–9.82%, MAE= 4.76%–5.80%
[134] 2019 8 sites in Xinjiang Uygur Autonomous Region, China 1 h 1 year 1 year SZA, P, T, WD, WS, RH, AP GSR RS and SRSCAD and FF MAPE, RMSE, TIC, CC, R2 MAPE= 0.066, RMSE= 20.21 W/m2, TIC= 0.06, CC= 3.40 s, R2 = 0.98
[137] 2019 IIT Gandhinagar 20 to 60 min 1 year Time series SR SARIMA-RVFL ?MAPE, ?R2, ? RMSE, ?MASE MAPE= 6.376, RMSE= 3.497, MASE= 6.452, R2 = –0.649
[139] 2019 Shaoxing, China 120°.23′ E/29°.72′ N 7.5 min to 60 min 3 years 2 years PV power, T PV power output ALSTM RMSE, MAPE, MAE ALSTM>PM>ARIMAX>LSTM>MLP>
[140] 2019 MMMUT, Gorakhpur, India 26°.43′/83°.26′ 1 d to 6 d Monthly Daily Tmin, Tmax, Tavg, WS,R, DP, GSR, AP, SZ Solar PV output MARS, CART, M5, RF MBE, RMSE, MAE RF>M5>MARS>CART
[141] 2019 Galicia, Spain Monthly 70% of data 30% of 1 year data Flow, SR, Lower and upper panel T Solar energy ML with BR, SCG, RB, GDX, LM algo NMSE RBFN, MLP>MLR, MN-LR
[131] 2019 Salto, Uruguay 31°.28′/57°.92′ 1 to 10 min Sky images GHI Cloud detection and motion estimation FS FS= 11.4%
[133] 2019 Victoria, Australia Hourly 80% of 278 days 20% of 278 d PV power, SI, AT PV power GASVM RMSE, MAPE RMSE= 11.226 W, MAPE= 1.7052%
[142] 2019 Australia Daily 5 years Daily, weekly, monthly WS, T, RH, GHI, DHI, WD PV output Ensemble with recursive arithmetic average RMSE, MAPE, MAE Ensemble>SVM>MLR>MARS
[146] 2019 Australia 1 d 60743 data points 23 to 5077 data points Time series GSR CNN and LSTM rRMSE, MAPE, APE rRMSE= 1.515%, MAPE= 4.672%, APE= 1.233%
[147] 2019 90 stations in China Hourly 1 year Hourly, daily, monthly MTSAT images, long, lat, Al GSR CNN and MLP RMSE RMSEhourly = 0.30 MJ/m2, RMSEdaily = 1.92 MJ/m2, RMSEmonthly = 1.08 MJ/m2
[148] 2019 Shagaya, Kuwait
Cocoa, USA
255 to 330 data points 32 to 38 data points GHI, GTI, WS, WD, AT, RH, P, CT Solar power Theta and MLSHM nMAE, nMSE nMAE= 0.0317–0.0877, nMSE= 0.00197–0.0168
[106] 2020 Barmer, Jaisalmer, Bikaner, Jodhpur 25°.75 N/71°.38 E
26°.90 N/70°.90 E
28°.02 N/73°.31 E
26°.23 N/73°.02 E
3/6/24 h 70% of 5 years 30% of 5 years DHI, DNI, DP, WD, RH, T GSR LSTM MAPE, RMSE MAPE= 6.69%–10.47%, RMSE= 0.099–0.181
[121] 2020 American Meteorological Society
2013–2014
10 years 2 years P, DLWF, DSWF, AP,P, RH, total column-integrated condensate ULWRs, CC Solar irradiation GA/PSO and CNN MSE, MAE, RS, AER MSE= 4.268·1012, MAE= 1.5153 (MJ/m2), RS= 70.89%, AER= 0.14208
[136] 2020 Oak Ridge National Laboratory 1 to 50min 1 year past PV power
Past PV+ CC
Solar radiation,
PV power
Uncertainty bias
and Kalman filter
nRMSE MAPE nRME= 7.43%–26.13%
MAPE= 5.72%–25.75%
[138] 2020 Wuhan, Beijing, Lhasa, and
Urumqi, China
30°.37′/114°.08′
39°.48′/116°.28′
29°.40′/91°.08′
43°.47′/87°.39′
10 years 10 years CI, sunshine ratio, Tavg,
RHavg
SR SVM, CNQR, Empirical model RMSE, R2, MABE, MBE SVM>CNQR>Empirical model
Tab.1  Summary of investigated studies
Fig.8  Time horizon based solar irradiation forecasting models (adapted with permission from Ref. [52]).
ACF Autocorrelation function
ACO Ant colony optimization
AIC Akaike information criteria
ALHM Adaptive learning hybrid model
ALSTM Attention mechanism with multiple LSTM
ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial neural network
APE Absolute percentage error
AR Auto regression
ARIMA Auto regressive integrated moving average
ARIMAX Auto-regressive integrated moving average model with exogenous variable
ARMA Auto regression and movie average
AVM Atmospheric motion vectors
BIC Bayesian information criteria
BR Bayesian regularization
BRT Boosted regression trees
BNI Beam normal irradiance
CART Classification and regression trees
CDER Renewable energies development centre
CDSWR Clear sky down welling short wave radiation
CGP Pola-Ribiere conjugate gradient
CNFRRM Cooperative network for renewable resources measurement
CNN Convolution neural network
CNQR Copula-based nonlinear quantile regression
CRPSS Continuous ranked probability skill score
CSRIO Commonwealth scientific and industrial research organization
DL Deep learning
DFT Discrete Fourier transform
DGSR Daily global solar radiation
DHI Direct horizontal irradiance
DHR Dynamic harmonic regression
DNI Direct normal irradiance
DNN Deep neural network
DSI Diffuse solar irradiance
DSR Daily solar radiation
DT Decision trees
ECMWF European centre for medium-range weather forecasts
EEMD Ensemble empirical mode decomposition
ELM Extreme learning machine
ELNN Elman neural network
EMD Empirical mode decomposition
ESR Extraterrestrial solar radiation
FF Firefly algorithm
FFBP Feed forward back propagation
FOA Fruit fly optimization algorithm
FS Forecast skill
GA Genetic algorithm
GABP Genetic algorithm back propagation neural network
GBDT Gradient boosting decision trees
GDX Gradient descent with adaptive learning rates and momentum
GFS Global forecast system
GHI Global horizontal irradiance
GMDHNN Group method of data handling neural network
GMDH Group method of data handling
GPI Global performance indicator
GRU Gate recurrent unit
GSI Global solar irradiance
GSR Global solar radiation
HGWO Differential evolution grey wolf optimize
HIS Hybrid intelligent system
HMM Hidden Markov model
ICP Interval coverage probability
IEA International energy agency
IMD Indian meteorological department
K-NN K-nearest neural network
KSI Kolonogorov-Smirnov integral
LLF Log-likelihood function
LASSO Least absolute shrinkage and selection operator
LR Linear regression
LM Levenberg-Marquardt
LMBP Levenberg Marquardt back propagation
LSTM Long short-term memory
LS-SVM Least square support vector machine
MABE Mean absolute biased error
MAD
MAE
Mean absolute deviation
Mean absolute error
MAID Mean absolute interval deviation
MAPE Mean absolute percentage error
MBD Mean bias deviation
MBE Mean bias error
MARS Multivariate adaptive regression splines
MFOA
ML
Modified fruit fly optimization
Machine learning
MLFFN Multilayer feed-forward neural network
MLP Multi-layer perceptron
MLR Multi linear regression
MNRE Ministry of New and Renewable Energy
MOS Model output statistics
MRE Mean relative error
MTM Markov transition method
NAR Nonlinear autoregressive
NCEP National Centers for Environmental Prediction
NCMRWF National Center for Medium Range Weather Forecasting
nE Normalized error
nMAE Normalized mean absolute error
NMSC National Meteorological Satellite Center
NNE Neural network ensemble
NNFOA Neural network modified fruit fly optimization
nRMSE Normalized root mean square error
NSE Nash-Sutcliffe efficiency
NWP Numerical weather prediction
OCCUR Optimized cross-validated clustering
PACF Partial autocorrelation function
PCA Principal component analysis
PEV Potential economic value
PINAW Prediction interval normalized average width
PSO Particle swarm optimization
PV Photo voltaic
RB Batch training with bias and weight learning rules
RBF Radial basis function
RDI Ramp detection index
RF Random forest
RM Ramp magnitude
RS Random subspace
RSM Response surface method
RVFL Random vector functional link
SARIMA Seasonal auto regressive integrated moving average
SCADA Supervisory control and data acquisition
SCG Scaled conjugate gradient
SP Smart persistence
SRSCAD Square root smoothly clipped absolute deviation
SVM Support vector machine
TIC Theil inequality coefficient
TMLM Time-varying multiple linear model
TSRY Typical solar radiation year
TMY Typical meteorological year
WD Wavelet decomposition
WGPR Weighted Gaussian process regression
WGPR-CFA Weighted Gaussian process regression – cascade forecasting architecture
WGPR-PFA Weighted Gaussian process regression – parallel forecasting architecture
WI Wilmot’s index
WMIM Wrapper mutual information methodology
WRF Weather research and forecasting
WT Wavelet transform
  
1 S Sun, S Wang, G Zhang, J Zheng. A decomposition-clustering-ensemble learning approach for solar radiation forecasting. Solar Energy, 2018, 163: 189–199
https://doi.org/10.1016/j.solener.2018.02.006
2 A S Bahaj. Means of enhancing and promoting the use of solar energy. Renewable Energy, 2002, 27(1): 97–105
https://doi.org/10.1016/S0960-1481(01)00162-8
3 D I Barnes. Understanding pulverised coal, biomass and waste combustion–a brief overview. Applied Thermal Engineering, 2015, 74: 89–95
https://doi.org/10.1016/j.applthermaleng.2014.01.057
4 A Setel, I M Gordan, C E Gordan. Use of geothermal energy to produce electricity and heating at average temperatures. In: Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion, Belgrade, Serbia, 2016
5 L Alhmoud, B Wang. A review of the state-of-the-art in wind-energy reliability analysis. Renewable & Sustainable Energy Reviews, 2018, 81: 1643–1651
https://doi.org/10.1016/j.rser.2017.05.252
6 S Sobri, S Koohi-Kamali, N A Rahim. Solar photovoltaic generation forecasting methods: a review. Energy Conversion and Management, 2018, 156: 459–497
https://doi.org/10.1016/j.enconman.2017.11.019
7 International Energy Agency. Snapshot of global photovoltaic markets. Technical Report IEA PVPS T1–332018, 2018
8 J Fan, L Wu, F Zhang, H Cai, W Zeng, X Wang, H Zou. Empirical and machine learning models for predicting daily global solar radiation from sunshine duration: a review and case study in China. Renewable & Sustainable Energy Reviews, 2019, 100: 186–212
https://doi.org/10.1016/j.rser.2018.10.018
9 S Mohanty, P K Patra, S S Sahoo, A Mohanty. Forecasting of solar energy with application for a growing economy like India: survey and implication. Renewable & Sustainable Energy Reviews, 2017, 78: 539–553
https://doi.org/10.1016/j.rser.2017.04.107
10 International Energy Agency. Snapshot of global PV markets. Photovoltaic Power Systems Technology Collaboration Program Report IEA PVPS T1–35, 2019
11 International Renewable Energy Agency (IRENA).Renewable capacity statistics 2019. Technical Report, Abu Dhabi, 2019
12 G. GraphAnnual report by Ministry of New and Renewable Energy. 2017, available at the website of mnre.gov.in
13 R K Singh. India’s renewable energy capacity crosses 80 GW-mark. 2019–07–16, available at website of The Economic Times.
14 G Masson, M Brunisholz. 2015 Snapshot of global photovoltaic markets. IEA PVPS T1–292016, 2016
15 S A Kalogirou. Global photovoltaic markets. In: McEvoy’s Handbook of Photovoltaics . Academic Press, 2016, 1231–1235
16 S C Nwokolo, J C Ogbulezie. A quantitative review and classification of empirical models for predicting global solar radiation in West Africa. Beni-Suef University Journal of Basic and Applied Sciences, 2018, 7(4): 367–396
https://doi.org/10.1016/j.bjbas.2017.05.001
17 K Wang, X Qi, H Liu. A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network. Applied Energy, 2019, 251: 113315
https://doi.org/10.1016/j.apenergy.2019.113315
18 J G da Silva Fonseca Jr, T Oozeki, T Takashima, et al.. Use of support vector regression and numerically predicted cloudiness to forecast power output of a photovoltaic power plant in Kitakyushu, Japan. Progress in Photovoltaics: Research and Applications, 2012, 20(7): 874–882
https://doi.org/10.1002/pip.1152
19 V Z Antonopoulos, D M Papamichail, V G Aschonitis, et al.. Solar radiation estimation methods using ANN and empirical models. Computers and Electronics in Agriculture, 2019, 160: 160–167
https://doi.org/10.1016/j.compag.2019.03.022
20 Y S Manjili, R Vega, M M Jamshidi. Data-analytic-based adaptive solar energy forecasting framework. IEEE Systems Journal, 2018, 12(1): 285–296
https://doi.org/10.1109/JSYST.2017.2769483
21 J Antonanzas, N Osorio, R Escobar, et al.. Review of photovoltaic power forecasting. Solar Energy, 2016, 136: 78–111
https://doi.org/10.1016/j.solener.2016.06.069
22 A. KumarKUSUM scheme for solar uptake by farmers: a fineprint. 2019–03–22, available at website of ET EnergyWorld
23 L Gigoni, A Betti, E Crisostomi, et al.. Day-ahead hourly forecasting of power generation from photovoltaic plants. IEEE Transaction on Sustainable Energy, 2018, 9(2): 831–842
https://doi.org/10.1109/TSTE.2017.2762435
24 Stanwell. Negative prices: how they occur, what they mean? 2020–04–16, available at website of Stanwell
25 P Götz, J Henkel, T Lenck, et al.. Negative Electricity Prices: Causes and Effects. Agora Energiewende, 2014.
26 D Yang, E Wu, J Kleissl. Operational solar forecasting for the real-time market. International Journal of Forecasting, 2019, 35(4): 1499–1519
https://doi.org/10.1016/j.ijforecast.2019.03.009
27 T Huld. VMAPS: Software tools and data for the estimation of solar radiation and photovoltaic module performance over large geographical areas. Solar Energy, 2017, 142: 171–181
https://doi.org/10.1016/j.solener.2016.12.014
28 A Khosravi, R O Nunes, M E H Assad, et al.. Comparison of artificial intelligence methods in estimation of daily global solar radiation. Journal of Cleaner Production, 2018, 194: 342–358
https://doi.org/10.1016/j.jclepro.2018.05.147
29 J Munkhammar, D Van der Meer, J Widén. Probabilistic forecasting of high-resolution clear-sky index time-series using a Markov-chain mixture distribution model. Solar Energy, 2019, 184: 688–695
https://doi.org/10.1016/j.solener.2019.04.014
30 J Fan, B Chen, L Wu, et al.. Evaluation and development of temperature-based empirical models for estimating daily global solar radiation in humid regions. Energy, 2018, 144: 903–914
https://doi.org/10.1016/j.energy.2017.12.091
31 N Premalatha, A Valan Arasu. Prediction of solar radiation for solar systems by using ANN models with different back propagation algorithms. Journal of Applied Research and Technology, 2016, 14(3): 206–214
https://doi.org/10.1016/j.jart.2016.05.001
32 M A Behrang, E Assareh, A Ghanbarzadeh, et al.. The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data. Solar Energy, 2010, 84(8): 1468–1480
https://doi.org/10.1016/j.solener.2010.05.009
33 A Fouilloy, C Voyant, G Notton, et al.. Solar irradiation prediction with machine learning: forecasting models selection method depending on weather variability. Energy, 2018, 165: 620–629
https://doi.org/10.1016/j.energy.2018.09.116
34 L Mazorra-Aguiar, F Díaz. Solar radiation forecasting with statistical models. In: Wind Field and Solar Radiation Characterization and Forecasting: A Numerical Approach for Complex Terrain, Springer Verlag, 2018: 171–200
35 A Dolara, S Leva, G Manzolini. Comparison of different physical models for PV power output prediction. Solar Energy, 2015, 119: 83–99
https://doi.org/10.1016/j.solener.2015.06.017
36 Y Liu, S Shimada, J Yoshino, et al.. Ensemble forecasting of solar irradiance by applying a mesoscale meteorological model. Solar Energy, 2016, 136: 597–605
https://doi.org/10.1016/j.solener.2016.07.043
37 H K Yadav, Y Pal, M M Tripathi. A novel GA-ANFIS hybrid model for short-term solar PV power forecasting in Indian electricity market. Journal of Information and Optimization Science, 2019, 40(2): 377–395
https://doi.org/10.1080/02522667.2019.1580880
38 P M Reilly. Probability and statistics for engineers and scientists. Canadian Journal of Statistics, 1978, 6(2): 283–284
https://doi.org/10.2307/3315054
39 C Wan, J Zhao, Y Song, et al.. Photovoltaic and solar power forecasting for smart grid energy management. CSEE Journal of Power Energy Systems, 2015, 1(4): 38–46
https://doi.org/10.17775/CSEEJPES.2015.00046
40 G U Yule. On the time-correlation problem, with especial reference to the variate–difference correlation method. Journal of the Royal Statistical Society, 1921, 84(4): 497
https://doi.org/10.2307/2341101
41 Y Wang, C Wang, C Shi, et al.. Short-term cloud coverage prediction using the ARIMA time series model. Remote Sensing Letters, 2018, 9(3): 274–283
https://doi.org/10.1080/2150704X.2017.1418992
42 MATLAB. Works India-Econometric Modeler App Overview. 2019–12–20, available at website of MathWorks India
43 E B sekulima, M S El Moursi, A Al Hinai, et al.. Wind speed and solar irradiance forecasting techniques for enhanced renewable energy integration with the grid: a review. IET Renewable Power Generation, 2016, 10(7): 885–989
https://doi.org/10.1049/iet-rpg.2015.0477
44 S Atique, S Noureen, V Roy, et al.. Forecasting of total daily solar energy generation using ARIMA: a case study. In: 9th Annual Computing and Communication Workshop Conference, Las Vegas, NV, USA, 2019, 114–119
45 M H Alsharif, M K Younes, J Kim. Time series ARIMA model for prediction of daily and monthly average global solar radiation: the case study of Seoul, South Korea. Symmetry, 2019, 11(2): 240
https://doi.org/10.3390/sym11020240
46 A Shadab, S Said, S Ahmad. Box–Jenkins multiplicative ARIMA modeling for prediction of solar radiation: a case study. International Journal of Energy Water Resources, 2019, 3: 0123456789
https://doi.org/10.1007/s42108-019-00037-5
47 I Colak, M Yesilbudak, N Genc, et al.. Multi-period prediction of solar radiation using ARMA and ARIMA models. In: IEEE 14th International Conference Machine Learning and Applications, Miami, FL, USA, 2015, 1045–1049
48 J Doorga, S Rughooputh, R Boojhawon. Modelling the global solar radiation climate of Mauritius using regression techniques. Renewable Energy, 2019, 131: 861–878
https://doi.org/10.1016/j.renene.2018.07.107
49 J R Trapero, N Kourentzes, A Martin. Short-term solar irradiation forecasting based on dynamic harmonic regression. Energy, 2015, 84: 289–295
https://doi.org/10.1016/j.energy.2015.02.100
50 M Suthar, G K Singh, R P Saini. Effects of air pollution for estimating global solar radiation in India. International Journal of Sustainable Energy, 2017, 36(1): 20–27
https://doi.org/10.1080/14786451.2014.979348
51 J M Bright, C J Smith, P G Taylor, et al.. Stochastic generation of synthetic minutely irradiance time series derived from mean hourly weather observation data. Solar Energy, 2015, 115: 229–242
https://doi.org/10.1016/j.solener.2015.02.032
52 C Voyant, G Notton, S Kalogirou, et al.. Machine learning methods for solar radiation forecasting: a review. Renewable Energy, 2017, 105: 569–582
https://doi.org/10.1016/j.renene.2016.12.095
53 E. GurarieIntroduction to stochastic processes: Markov chains. 2019–11–22, available at website of Department of Mathematics, University of Washington
54 V Eniola, T Suriwong, C Sirisamphanwong, et al.. Hour-ahead forecasting of photovoltaic power output based on hidden Markov model and genetic algorithm. International Journal of Renewable Energy Research, 2019, 9(2): 933–943
55 S Bhardwaj, V Sharma, S Srivastava, et al.. Estimation of solar radiation using a combination of hidden Markov model and generalized fuzzy model. Solar Energy, 2013, 93: 43–54
https://doi.org/10.1016/j.solener.2013.03.020
56 A Wibun, P Chaiwiwatworakul. An estimation of Thailand’s hourly solar radiation using Markov transition matrix method. Applied Mechanics and Materials, 2016, 839: 29–33
https://doi.org/10.4028/www.scientific.net/AMM.839.29
57 F O Hocaoglu, F Serttas. A novel hybrid (Mycielski-Markov) model for hourly solar radiation forecasting. Renewable Energy, 2017, 108: 635–643
https://doi.org/10.1016/j.renene.2016.08.058
58 S Li, H Ma, W Li. Typical solar radiation year construction using k-means clustering and discrete-time Markov chain. Applied Energy, 2017, 205: 720–731
https://doi.org/10.1016/j.apenergy.2017.08.067
59 G Mengaldo, A Wyszogrodzki, M Diamantakis, et al.. Current and emerging time-integration strategies in global numerical weather and climate prediction. Archives of Computational Methods in Engineering, 2019, 26(3): 663–684
https://doi.org/10.1007/s11831-018-9261-8
60 A Yadav, S Chandel. Solar radiation prediction using artificial neural network techniques: a review. Renewable & Sustainable Energy Reviews, 2014, 33: 772–781
https://doi.org/10.1016/j.rser.2013.08.055
61 S Das, R Ashrit, G Iyengar, et al.. Skills of different mesoscale models over Indian region during monsoon season: forecast errors. Journal of Earth System Science, 2008, 117(5): 603–620
https://doi.org/10.1007/s12040-008-0056-4
62 R A Verzijlbergh, P W Heijnen, S R De Roode, et al.. Improved model output statistics of numerical weather prediction based irradiance forecasts for solar power applications. Solar Energy, 2015, 118: 634–645
https://doi.org/10.1016/j.solener.2015.06.005
63 H Verbois, R Huva, A Rusydi, et al.. Solar irradiance forecasting in the tropics using numerical weather prediction and statistical learning. Solar Energy, 2018, 162: 265–277
https://doi.org/10.1016/j.solener.2018.01.007
64 K Bakker, K Whan, W Knap, et al.. Comparison of statistical post-processing methods for probabilistic NWP forecasts of solar radiation. Solar Energy, 2019, 191: 138–150
https://doi.org/10.1016/j.solener.2019.08.044
65 G H Hargreaves, Z A Samani. Estimating potential evapotranspiration. Journal of the Irrigation and Drainage Division, 1982, 108(3): 225–230
66 F Besharat, A A Dehghan, A R Faghih. Empirical models for estimating global solar radiation: a review and case study. Renewable & Sustainable Energy Reviews, 2013, 21: 798–821
https://doi.org/10.1016/j.rser.2012.12.043
67 B Y Mahajan, K Namrata. Performance evaluation of developed empirical models for predicting global solar radiation in western region of India. International Journal of Renewable Energy Research, 2019, 9(3): 1135–1143
68 E Quansah, L K Amekudzi, K Preko, et al.. Empirical models for estimating global solar radiation over the Ashanti Region of Ghana. Journal of Solar Energy, 2014, 2014: 1–6
https://doi.org/10.1155/2014/897970
69 T R Ayodele, A S O Ogunjuyigbe. Performance assessment of empirical models for prediction of daily and monthly average global solar radiation: the case study of Ibadan, Nigeria. International Journal of Ambient Energy, 2017, 38(8): 803–813
https://doi.org/10.1080/01430750.2016.1222961
70 N Bailek, K Bouchouicha, Z Al-Mostafa, et al.. A new empirical model for forecasting the diffuse solar radiation over Sahara in the Algerian Big South. Renewable Energy, 2018, 117: 530–537
https://doi.org/10.1016/j.renene.2017.10.081
71 L V Fausett. Fundamentals of Neural Networks: Architectures, Algorithms, and Applications. Prentice-Hall, Inc., USA, 1994
72 A Ghanbarzadeh, A R Noghrehabadi, E Assareh, et al.. Solar radiation forecasting based on meteorological data using artificial neural networks. In: 7th IEEE International Conference of Industrial Informatics, Cardiff, Wales, UK, 2009: 227–231
73 A H Elsheikh, S W Sharshir, M Abd Elaziz, et al.. Modeling of solar energy systems using artificial neural network: a comprehensive review. Solar Energy, 2019, 180: 622–639
https://doi.org/10.1016/j.solener.2019.01.037
74 S Samara, E Natsheh. Modeling the output power of heterogeneous photovoltaic panels based on artificial neural networks using low cost microcontrollers. Heliyon, 2018, 4(11): e00972
https://doi.org/10.1016/j.heliyon.2018.e00972
75 M Bou-Rabee, S A Sulaiman, M S Saleh, et al.. Using artificial neural networks to estimate solar radiation in Kuwait. Renewable & Sustainable Energy Reviews, 2017, 72: 434–438
https://doi.org/10.1016/j.rser.2017.01.013
76 A Sözen, E Arcaklioǧlu, M Özalp, et al.. Forecasting based on neural network approach of solar potential in Turkey. Renewable Energy, 2005, 30(7): 1075–1090
https://doi.org/10.1016/j.renene.2004.09.020
77 A Koca, H F Oztop, Y Varol, et al.. Estimation of solar radiation using artificial neural networks with different input parameters for Mediterranean region of Anatolia in Turkey. Expert Systems with Applications, 2011, 38(7): 8756–8762
https://doi.org/10.1016/j.eswa.2011.01.085
78 Y Yu, J Cao, J Zhu. An LSTM short-term solar irradiance forecasting under complicated weather conditions. IEEE Access : Practical Innovations, Open Solutions, 2019, 7: 145651–145666
https://doi.org/10.1109/ACCESS.2019.2946057
79 N Kumar, U K Sinha, S P Sharma. Prediction of daily global solar radiation using neural networks with improved gain factors and RBF Networks. International Journal of Renewable Energy Research, 2017, 7(3): 1235–1244
80 G Notton, C Voyant, A Fouilloy, et al.. Some applications of ANN to solar radiation estimation and forecasting for energy applications. Applied Sciences (Basel, Switzerland), 2019, 9(1): 209
https://doi.org/10.3390/app9010209
81 F Rodríguez, A Fleetwood, A Galarza, et al.. Predicting solar energy generation through artificial neural networks using weather forecasts for microgrid control. Renewable Energy, 2018, 126: 855–864
https://doi.org/10.1016/j.renene.2018.03.070
82 B Jahani, B Mohammadi. A comparison between the application of empirical and ANN methods for estimation of daily global solar radiation in Iran. Theoretical and Applied Climatology, 2019, 137(1-2): 1257–1269
https://doi.org/10.1007/s00704-018-2666-3
83 B Sivaneasan, C Y Yu, K P Goh. Solar forecasting using ANN with fuzzy logic pre-processing. Energy Procedia, 2017, 143: 727–732
https://doi.org/10.1016/j.egypro.2017.12.753
84 G Cervone, L Clemente-Harding, S Alessandrini, et al.. Short-term photovoltaic power forecasting using artificial neural networks and an analog ensemble. Renewable Energy, 2017, 108: 274–286
https://doi.org/10.1016/j.renene.2017.02.052
85 C R Chen, U T Kartini. K-nearest neighbor neural network models for very short-term global solar irradiance forecasting based on meteorological data. Energies, 2017, 10(2): 186
https://doi.org/10.3390/en10020186
86 Z Li, S M Rahman, R Vega, et al.. A hierarchical approach using machine learning methods in solar photovoltaic energy production forecasting. Energies, 2016, 9(1): 55
https://doi.org/10.3390/en9010055
87 M Vakili, S R Sabbagh-Yazdi, S Khosrojerdi, et al.. Evaluating the effect of particulate matter pollution on estimation of daily global solar radiation using artificial neural network modeling based on meteorological data. Journal of Cleaner Production, 2017, 141: 1275–1285
https://doi.org/10.1016/j.jclepro.2016.09.145
88 R Hossain, A M T Ooa, A B M S Alia. Historical weather data supported hybrid renewable energy forecasting using artificial neural network (ANN). Energy Procedia, 2012, 14: 1035–1040
https://doi.org/10.1016/j.egypro.2011.12.1051
89 E İzgi, A Öztopal, B Yerli, et al.. Short-mid-term solar power prediction by using artificial neural networks. Solar Energy, 2012, 86(2): 725–733
https://doi.org/10.1016/j.solener.2011.11.013
90 S Alam, S C Kaushik, S N Garg. Assessment of diffuse solar energy under general sky condition using artificial neural network. Applied Energy, 2009, 86(4): 554–564
https://doi.org/10.1016/j.apenergy.2008.09.004
91 M Awad, R Khanna. Support vector machines for classification. In: Efficient Learning Machines, Apress, Berkeley, CA, 2015, 39–66
92 A Zendehboudi, M A Baseer, R Saidur. Application of support vector machine models for forecasting solar and wind energy resources: a review. Journal of Cleaner Production, 2018, 199: 272–285
https://doi.org/10.1016/j.jclepro.2018.07.164
93 N Srivastava, G Hinton, A Krizhevsky, et al.. Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 2014, 15: 1929–1958
94 W Zhang, J Chen. Relief feature selection and parameter optimization for support vector machine based on mixed kernel function. International Journal of Performability Engineering, 2018, 14(2): 280–289
https://doi.org/10.23940/ijpe.18.02.p9.280289
95 R Ruiz-Gonzalez, J Gomez-Gil, F J Gomez-Gil, et al.. An SVM-based classifier for estimating the state of various rotating components in agro-industrial machinery with a vibration signal acquired from a single point on the machine chassis. Sensors (Switzerland), 2014, 14(11): 20713–20735
https://doi.org/10.3390/s141120713
96 P F Jiménez-Pérez, L Mora-López. Modeling and forecasting hourly global solar radiation using clustering and classification techniques. Solar Energy, 2016, 135: 682–691
https://doi.org/10.1016/j.solener.2016.06.039
97 J Zeng, W Qiao. Short-term solar power prediction using a support vector machine. Renewable Energy, 2013, 52: 118–127
https://doi.org/10.1016/j.renene.2012.10.009
98 J Shi, W J Lee, Y Liu, et al.. Forecasting power output of photovoltaic systems based on weather classification and support vector machines. IEEE Transactions on Industry Applications, 2012, 48(3): 1064–1069
https://doi.org/10.1109/TIA.2012.2190816
99 H S Jang, K Y Bae, H S Park, et al.. Solar power prediction based on satellite images and support vector machine. IEEE Transaction on Sustainable Energy, 2016, 7(3): 1255–1263
https://doi.org/10.1109/TSTE.2016.2535466
100 J Fan, L Wu, F Zhang, et al.. Evaluating the effect of air pollution on global and diffuse solar radiation prediction using support vector machine modeling based on sunshine duration and air temperature. Renewable & Sustainable Energy Reviews, 2018, 94: 732–747
https://doi.org/10.1016/j.rser.2018.06.029
101 M Ma, L Zhao, S Deng, et al.. Estimation of horizontal direct solar radiation considering air quality index in China. Energy Procedia, 2019, 158: 424–430
https://doi.org/10.1016/j.egypro.2019.01.127
102 A Gensler, J Henze, B Sick, et al.. Deep Learning for solar power forecasting–an approach using AutoEncoder and LSTM neural networks. In: 2016 IEEE International Conference on Systems Man and Cybernetics, Budapest, 2016, 2858–2865
103 V Suresh, P Janik, J Rezmer, et al.. Forecasting solar PV output using convolutional neural networks with a sliding window algorithm. Energies, 2020, 13(3): 723
https://doi.org/10.3390/en13030723
104 M Aslam, J M Lee, H S Kim, et al.. Deep learning models for long-term solar radiation forecasting considering microgrid installation: a comparative study. Energies, 2019, 13(1): 147
https://doi.org/10.3390/en13010147
105 X Qing, Y Niu. Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM. Energy, 2018, 148: 461–468
https://doi.org/10.1016/j.energy.2018.01.177
106 D Chandola, H Gupta, V A Tikkiwal, et al.. Multi-step ahead forecasting of global solar radiation for arid zones using deep learning. Procedia Computer Science, 2020, 167: 626–635
https://doi.org/10.1016/j.procs.2020.03.329
107 Y Wang, W Liao, Y Chang. Gated recurrent unit network-based short-term photovoltaic forecasting. Energies, 2018, 11(8): 2163
https://doi.org/10.3390/en11082163
108 N Sodsong, K M Yu, W Ouyang. Short-term solar PV forecasting using gated recurrent unit with a cascade model. In: 1st IEEE International Conference on Artificial Intelligence in Information and Communication, Okinawa, Japan, 2019, 292–297
109 Y Xie. Values and limitations of statistical models. Research in Social Stratification and Mobility, 2011, 29(3): 343–349
https://doi.org/10.1016/j.rssm.2011.04.001
110 K R Kumar, M S Kalavathi. Artificial intelligence based forecast models for predicting solar power generation. Materials Today: Proceedings, 2018, 5(1): 796–802
https://doi.org/10.1016/j.matpr.2017.11.149
111 M Q Raza, M Nadarajah, J Li, et al.. An ensemble framework for day-ahead forecast of PV output power in smart grids. IEEE Transactions on Industrial Informatics, 2019, 15(8): 4624–4634
https://doi.org/10.1109/TII.2018.2882598
112 L Benali, G Notton, A Fouilloy, et al.. Solar radiation forecasting using artificial neural network and random forest methods: application to normal beam, horizontal diffuse and global components. Renewable Energy, 2019, 132: 871–884
https://doi.org/10.1016/j.renene.2018.08.044
113 H K Elminir, F F Areed, T S Elsayed. Estimation of solar radiation components incident on Helwan site using neural networks. Solar Energy, 2005, 79(3): 270–279
https://doi.org/10.1016/j.solener.2004.11.006
114 A Heydari, D A Garcia, F Keynia, et al.. A novel composite neural network based method for wind and solar power forecasting in microgrids. Applied Energy, 2019, 251: 113353
https://doi.org/10.1016/j.apenergy.2019.113353
115 A Mellit, A M A Pavan. 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy. Solar Energy, 2010, 84(5): 807–821
https://doi.org/10.1016/j.solener.2010.02.006
116 S X Chen, H B Gooi, M Q Wang. Solar radiation forecast based on fuzzy logic and neural networks. Renewable Energy, 2013, 60: 195–201
https://doi.org/10.1016/j.renene.2013.05.011
117 H Lan, C Zhang, Y Y Hong, et al.. Day-ahead spatiotemporal solar irradiation forecasting using frequency-based hybrid principal component analysis and neural network. Applied Energy, 2019, 247: 389–402
https://doi.org/10.1016/j.apenergy.2019.04.056
118 L Cornejo-Bueno, C Casanova-Mateo, J Sanz-Justo, et al.. Machine learning regressors for solar radiation estimation from satellite data. Solar Energy, 2019, 183: 768–775
https://doi.org/10.1016/j.solener.2019.03.079
119 L M Aguiar, B Pereira, P Lauret, et al.. Combining solar irradiance measurements, satellite-derived data and a numerical weather prediction model to improve intra-day solar forecasting. Renewable Energy, 2016, 97: 599–610
https://doi.org/10.1016/j.renene.2016.06.018
120 S Shamshirband, K Mohammadi, H Khorasanizadeh, et al.. Estimating the diffuse solar radiation using a coupled support vector machine-wavelet transform model. Renewable & Sustainable Energy Reviews, 2016, 56: 428–435
https://doi.org/10.1016/j.rser.2015.11.055
121 N Dong, J F Chang, A G Wu, et al.. A novel convolutional neural network framework based solar irradiance prediction method. International Journal of Electrical Power & Energy Systems, 2020, 114: 105411
https://doi.org/10.1016/j.ijepes.2019.105411
122 H Bouzgou, C A Gueymard. Fast short-term global solar irradiance forecasting with wrapper mutual information. Renewable Energy, 2019, 133: 1055–1065
https://doi.org/10.1016/j.renene.2018.10.096
123 S Ghimire, R C Deo, N J Downs,et al.. Global solar radiation prediction by ANN integrated with European Centre for medium range weather forecast fields in solar rich cities of Queensland Australia. Journal of Cleaner Production, 2019, 216: 288–310
https://doi.org/10.1016/j.jclepro.2019.01.158
124 C Huang, L Wang, L L Lai. Data-driven short-term solar irradiance forecasting based on information of neighboring sites. IEEE Transactions on Industrial Electronics, 2019, 66(12): 9918–9927
https://doi.org/10.1109/TIE.2018.2856199
125 X Huang, J Shi, B Gao, et al.. Forecasting hourly solar irradiance using hybrid wavelet transformation and Elman model in smart grid. IEEE Access : Practical Innovations, Open Solutions, 2019, 7: 139909–139923
https://doi.org/10.1109/ACCESS.2019.2943886
126 Y Liu, H Qin, Z Zhang, et al.. Ensemble spatiotemporal forecasting of solar irradiation using variational Bayesian convolutional gate recurrent unit network. Applied Energy, 2019, 253: 113596
https://doi.org/10.1016/j.apenergy.2019.113596
127 M Guermoui, F Melgani, C Danilo. Multi-step ahead forecasting of daily global and direct solar radiation: a review and case study of Ghardaia region. Journal of Cleaner Production, 2018, 201: 716–734
https://doi.org/10.1016/j.jclepro.2018.08.006
128 F Wang, Z Mi, S Su, et al.. Short-term solar irradiance forecasting model based on artificial neural network using statistical feature parameters. Energies, 2012, 5(5): 1355–1370
https://doi.org/10.3390/en5051355
129 D Liu, K Sun. Random forest solar power forecast based on classification optimization. Energy, 2019, 187: 115940
https://doi.org/10.1016/j.energy.2019.115940
130 W Zhang, H Dang, R Simoes. A new solar power output prediction based on hybrid forecast engine and decomposition model. ISA Transactions, 2018, 81: 105–120
https://doi.org/10.1016/j.isatra.2018.06.004
131 M Caldas, R Alonso-Suárez. Very short-term solar irradiance forecast using all-sky imaging and real-time irradiance measurements. Renewable Energy, 2019, 143: 1643–1658
https://doi.org/10.1016/j.renene.2019.05.069
132 A T Eseye, J Zhang, D Zheng. Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and meteorological information. Renewable Energy, 2018, 118: 357–367
https://doi.org/10.1016/j.renene.2017.11.011
133 W VanDeventer, E Jamei, G S Thirunavukkarasu, et al.. Short-term PV power forecasting using hybrid GASVM technique. Renewable Energy, 2019, 140: 367–379
https://doi.org/10.1016/j.renene.2019.02.087
134 Y Dong, H Jiang. Global solar radiation forecasting using square root regularization-based ensemble. Mathematical Problems in Engineering, 2019, 2019: 9620945
https://doi.org/10.1155/2019/9620945
135 M Abuella, B Chowdhury. Forecasting of solar power ramp events: a post-processing approach. Renewable Energy, 2019, 133: 1380–1392
https://doi.org/10.1016/j.renene.2018.09.005
136 J Dong, M M Olama, T Kuruganti, et al.. Novel stochastic methods to predict short-term solar radiation and photovoltaic power. Renewable Energy, 2020, 145: 333–346
https://doi.org/10.1016/j.renene.2019.05.073
137 V Kushwaha, N M Pindoriya. A SARIMA-RVFL hybrid model assisted by wavelet decomposition for very short-term solar PV power generation forecast. Renewable Energy, 2019, 140: 124–139
https://doi.org/10.1016/j.renene.2019.03.020
138 Y Liu, Y Zhou, Y Chen, et al.. Comparison of support vector machine and copula-based nonlinear quantile regression for estimating the daily diffuse solar radiation: a case study in China. Renewable Energy, 2020, 146: 1101–1112
https://doi.org/10.1016/j.renene.2019.07.053
139 H Zhou, Y Zhang, L Yang, et al.. Short-term photovoltaic power forecasting based on long short term memory neural network and attention mechanism. IEEE Access : Practical Innovations, Open Solutions, 2019, 7: 78063–78074
https://doi.org/10.1109/ACCESS.2019.2923006
140 R Srivastava, A N Tiwari, V K Giri. Solar radiation forecasting using MARS, CART, M5, and random forest model: a case study for India. Heliyon, 2019, 5(10): e02692
https://doi.org/10.1016/j.heliyon.2019.e02692
141 N Basurto, A Arroyo, R Vega, et al.. A hybrid intelligent system to forecast solar energy production. Computers & Electrical Engineering, 2019, 78: 373–387
https://doi.org/10.1016/j.compeleceng.2019.07.023
142 L Liu, M Zhan, Y Bai. A recursive ensemble model for forecasting the power output of photovoltaic systems. Solar Energy, 2019, 189: 291–298
https://doi.org/10.1016/j.solener.2019.07.061
143 C Feng, M Cui, B M Hodge, et al.. Unsupervised clustering-based short-term solar forecasting. IEEE Transaction on Sustainable Energy, 2019, 10(4): 2174–2185
https://doi.org/10.1109/TSTE.2018.2881531
144 S Monjoly, M André, R Calif, et al.. Hourly forecasting of global solar radiation based on multiscale decomposition methods: a hybrid approach. Energy, 2017, 119: 288–298
https://doi.org/10.1016/j.energy.2016.11.061
145 K Benmouiza, A Cheknane. Forecasting hourly global solar radiation using hybrid k-means and nonlinear autoregressive neural network models. Energy Conversion and Management, 2013, 75: 561–569
https://doi.org/10.1016/j.enconman.2013.07.003
146 S Ghimire, R C Deo, N Raj, et al.. Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms. Applied Energy, 2019, 253: 113541
https://doi.org/10.1016/j.apenergy.2019.113541
147 H Jiang, N Lu, J Qin, et al.. A deep learning algorithm to estimate hourly global solar radiation from geostationary satellite data. Renewable & Sustainable Energy Reviews, 2019, 114: 109327
https://doi.org/10.1016/j.rser.2019.109327
148 M AlKandari, I Ahmad. Solar power generation forecasting using ensemble approach based on deep learning and statistical methods. Applied Computing and Informatics, 2016, (in press)
149 S P Durrani, S Balluff, L Wurzer, et al.. Photovoltaic yield prediction using an irradiance forecast model based on multiple neural networks. Journal of Modern Power Systems and Clean Energy, 2018, 6(2): 255–267
https://doi.org/10.1007/s40565-018-0393-5
150 J Zhang, B M Hodge, A Florita, et al.. Metrics for evaluating the accuracy of solar power forecasting. In: 3rd International Workshop on Integration of Solar Power into Power Systems, London, England, 2013, 17436
151 C J Willmott, K Matsuura. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 2005, 30(1): 79–82
https://doi.org/10.3354/cr030079
152 P Lauret, C Voyant, T Soubdhan, et al.. A benchmarking of machine learning techniques for solar radiation forecasting in an insular context. Solar Energy, 2015, 112: 446–457
https://doi.org/10.1016/j.solener.2014.12.014
153 C F M Coimbra, J Kleissl, R Marquez. Overview of solar-forecasting methods and a metric for accuracy evaluation. In: Kleissl J, ed. Solar Energy Forecasting and Resource Assessment. Academic Press, 2013,171–194
154 G Crabtree, J Misewich, R Ambrosio, et al.. Integrating renewable electricity on the grid. In: AIP Conference Proceedings, 2011, 1401: 387–405
155 R J Hyndman, A B Koehler. Another look at measures of forecast accuracy. International Journal of Forecasting, 2006, 22(4): 679–688
https://doi.org/10.1016/j.ijforecast.2006.03.001
156 R M Pereira, C Silva Santos, A Rocha. Solar irradiance modelling using an offline coupling procedure for the weather research and forecasting (WRF) model. Solar Energy, 2019, 188: 339–352
https://doi.org/10.1016/j.solener.2019.06.020
157 J Zhang, Y Zhang, C S Yu. Rényi entropy uncertainty relation for successive projective measurements. Quantum Information Processing, 2015, 14(6): 2239–2253
https://doi.org/10.1007/s11128-015-0950-z
158 A Florita, B M Hodge, K Orwig. Identifying wind and solar ramping events. In: IEEE Green Technologies Conference (GreenTech), Denver, CO, USA, 2013, 147–152
159 Y Chu, H T C Pedro, M Li, et al.. Real-time forecasting of solar irradiance ramps with smart image processing. Solar Energy, 2015, 114: 91–104
https://doi.org/10.1016/j.solener.2015.01.024
160 M Russo, G Leotta, P M Pugliatti, et al.. Genetic programming for photovoltaic plant output forecasting. Solar Energy, 2014, 105: 264–273
https://doi.org/10.1016/j.solener.2014.02.021
161 M Despotovic, V Nedic, D Despotovic, et al.. Review and statistical analysis of different global solar radiation sunshine models. Renewable & Sustainable Energy Reviews, 2015, 52: 1869–1880
https://doi.org/10.1016/j.rser.2015.08.035
162 S Alessandrini, L Delle Monache, S Sperati, et al.. An analog ensemble for short-term probabilistic solar power forecast. Applied Energy, 2015, 157: 95–110
https://doi.org/10.1016/j.apenergy.2015.08.011
163 M Rana, I Koprinska, V G Agelidis. 2D-interval forecasts for solar power production. Solar Energy, 2015, 122: 191–203
https://doi.org/10.1016/j.solener.2015.08.018
164 M P Almeida, O Perpiñán, L Narvarte. PV power forecast using a nonparametric PV model. Solar Energy, 2015, 115: 354–368
https://doi.org/10.1016/j.solener.2015.03.006
165 M Paulescu, E Paulescu. Short-term forecasting of solar irradiance. Renewable Energy, 2019, 143: 985–994
https://doi.org/10.1016/j.renene.2019.05.075
166 C Voyant, G Notton. Solar irradiation nowcasting by stochastic persistence: a new parsimonious, simple and efficient forecasting tool. Renewable & Sustainable Energy Reviews, 2018, 92: 343–352
https://doi.org/10.1016/j.rser.2018.04.116
167 F Jiang, Y Jiang, H Zhi, et al.. Artificial intelligence in healthcare: past, present and future. Stroke and Vascular Neurology, 2017, 2(4): 230–243
https://doi.org/10.1136/svn-2017-000101
168 H B Wang, J N Xiong, C Y Zhao. The mid-term forecast method of solar radiation index. Chinese Astronomy and Astrophysics, 2015, 39(2): 198–211 doi:10.1016/j.chinastron.2015.04.010
169 D Yang. A guideline to solar forecasting research practice: reproducible, operational, probabilistic or physically-based, ensemble, and skill (ROPES). Journal of Renewable and Sustainable Energy, 2019, 11(2): 022701
https://doi.org/10.1063/1.5087462
170 V Gil, M A Gaertner, C Gutierrez, et al.Impact of climate change on solar irradiation and variability over the Iberian Peninsula using regional climate models. International Journal of Climatology, 2018, 39(3): 1733–1747doi: 10.1002/joc.5916
[1] Yaolin LIN, Wei YANG. An ANN-exhaustive-listing method for optimization of multiple building shapes and envelope properties with maximum thermal performance[J]. Front. Energy, 2021, 15(2): 550-563.
[2] Rashmi P. SHETTY, A. SATHYABHAMA, P. Srinivasa PAI. Comparison of modeling methods for wind power prediction: a critical study[J]. Front. Energy, 2020, 14(2): 347-358.
[3] Arunachalam VELMURUGAN,Marimuthu LOGANATHAN,E. James GUNASEKARAN. Prediction of performance, combustion and emission characteristics of diesel-thermal cracked cashew nut shell liquid blends using artificial neural network[J]. Front. Energy, 2016, 10(1): 114-124.
[4] S. Surender REDDY,Chan-Mook JUNG,Ko Jun SEOG. Day-ahead electricity price forecasting using back propagation neural networks and weighted least square technique[J]. Front. Energy, 2016, 10(1): 105-113.
[5] Solomon O. GIWA,Sunday O. ADEKOMAYA,Kayode O. ADAMA,Moruf O. MUKAILA. Prediction of selected biodiesel fuel properties using artificial neural network[J]. Front. Energy, 2015, 9(4): 433-445.
[6] J. JAYACHANDRAN,R. MURALI SACHITHANANDAM. Performance investigation of artificial intelligence based controller for three phase four leg shunt active filter[J]. Front. Energy, 2015, 9(4): 446-460.
[7] A. CHITRA,S. HIMAVATHI. A modified neural learning algorithm for online rotor resistance estimation in vector controlled induction motor drives[J]. Front. Energy, 2015, 9(1): 22-30.
[8] Chang CHEN,Danmei XIE,Yangheng XIONG,Hengliang ZHANG. Optimization of turbine cold-end system based on BP neural network and genetic algorithm[J]. Front. Energy, 2014, 8(4): 459-463.
[9] Moulay Rachid DOUIRI, Mohamed CHERKAOUI. Comparative study of various artificial intelligence approaches applied to direct torque control of induction motor drives[J]. Front Energ, 2013, 7(4): 456-467.
[10] Simarjit KAUR, Yajvender Pal VERMA, Sunil AGRAWAL. Optimal generation scheduling in power system using frequency prediction through ANN under ABT environment[J]. Front Energ, 2013, 7(4): 468-478.
[11] Srinivasan CHANDRASEKARAN, Arunachalam AMARKARTHIK, Karuppan SIVAKUMAR, Dhanasekaran SELVAMUTHUKUMARAN, Shaji SIDNEY. Experimental investigation and ANN modeling on improved performance of an innovative method of using heave response of a non-floating object for ocean wave energy conversion[J]. Front Energ, 2013, 7(3): 279-287.
[12] ZHANG Xinhai, XI Guang, ZHANG Xinhai. New experimental technique to determine coal self-ignition duration[J]. Front. Energy, 2008, 2(4): 479-483.
[13] ZHAO Honglei, WANG Songtao, HAN Wanjin, FENG Guotai. Aerodynamic design by jointly applying S2 flow surface calculation and modern optimization methods on multistage axial turbine[J]. Front. Energy, 2008, 2(1): 93-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed