Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2022, Vol. 16 Issue (5) : 793-811    https://doi.org/10.1007/s11708-022-0821-0
REVIEW ARTICLE
Review on cryogenic technologies for CO2 removal from natural gas
Yujing BI, Yonglin JU()
Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(3176 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

CO2 in natural gas (NG) is prone to condense directly from gas to solid or solidify from liquid to solid at low temperatures due to its high triple point and boiling temperature, which can cause a block of equipment. Meanwhile, CO2 will also affect the calorific value of NG. Based on the above reasons, CO2 must be removed during the NG liquefaction process. Compared with conventional methods, cryogenic technologies for CO2 removal from NG have attracted wide attention due to their non-polluting and low-cost advantages. Its integration with NG liquefaction can make rational use of the cold energy and realize the purification of NG and the production of by-product liquid CO2. In this paper, the phase behavior of the CH4-CO2 binary mixture is summarized, which provides a basis for the process design of cryogenic CO2 removal from NG. Then, the detailed techniques of design and optimization for cryogenic CO2 removal in recent years are summarized, including the gas-liquid phase change technique and the gas-solid phase change technique. Finally, several improvements for further development of the cryogenic CO2 removal process are proposed. The removal process in combination with the phase change and the traditional techniques with renewable energy will be the broad prospect for future development.

Keywords cryogenic CO2 removal      purification of natural gas (NG)      biogas upgrading      CH4-CO2 binary system     
Corresponding Author(s): Yonglin JU   
Online First Date: 29 March 2022    Issue Date: 28 November 2022
 Cite this article:   
Yujing BI,Yonglin JU. Review on cryogenic technologies for CO2 removal from natural gas[J]. Front. Energy, 2022, 16(5): 793-811.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-022-0821-0
https://academic.hep.com.cn/fie/EN/Y2022/V16/I5/793
Fig.1  Qualitative pressure-temperature diagram of CO2-CH4 binary system.
Ref.Composition of the mixture (mole fraction)Temperature/KPressure/MPaMethods
[26]CH4 + CO2 (20.5%–86.5%)194.54–215.650.92–5.39Non-sampling visual observation and sampling
[27]CH4 + CO2 (1%–20%)113.15–-210.150.41–10.13Non-sampling visual observation and sampling
[28]CH4 + CO2 (0.16%–20%)97.54–216.150.028–4.87Sampling
[29]CH4 + CO2 (vapor:0.6%–17.5%, liquid:1.83%–74%)165.21–210.211.89–4.84Sampling
[30]CH4 + CO2 (0.12%–10.67%)137.5–1980.17–2.78Non-sampling visual observation
[31]CH4 + CO2 (1%–2.93%)168.6–187.70.96–3.01Non-sampling visual observation
[32]CH4 + CO2 (10.8%–54.2%)196.5–210.30.29–4.45Dynamic analysis
[33]CH4 + CO2 (0.0213%–2.8960%)112–169.90.093–2.315Static analytic
[34]CH4 + CO2 (0.0213%–2.8960%)113.15–169.7Static analytic
[35]NG + CO2 (69.14%, 39.37%)253–2850.3–10.5Observation
[36]CH4 + CO2 (0.5%–20.1%)153.15–193.150.219–3.038Static analytic with sampling
Tab.1  Experimental research on phase behavior and CO2 frost points of CH4-CO2 binary mixture
Ref.MethodsPhase equilibriaData pointsAverage absolute deviation (AAD)
[37]PR equation of stateSLVE
[38]Equivalence fugacity modelSVESLESLVE2510.08%
[30]BWR equation of stateSVE160.39%
[39]PR equation of stateSVE SLE580.26%
[40]ProMax simulationSVESLE4 (Donnelly and Katz)0.90%
SLVE8 (Davis et al.)2.84%
[41]HYSYS simulation
[42]HYSYS simulationSLE SVE28 (SVE) + 11 (SLE)0.57% (SVE), 0.66% (SLE)
PR equation of state3.35% (SVE), 3.39% (SLE)
[32]SRK equation of stateSVE170.31%
[43]PR equation of stateSVE50.43%
HYSYS simulation50.97%
Charting51.17%
[44]PR equation of stateSVE SLE 5.67% (SLVE), 0.85% (SVE), 1.84% (SLE)
Yokozeki equation of state SLVE5.15% (SLVE), 0.77% (SVE), 1.98% (SLE)
[45]SRK equation of stateSLVE2.48%–7.14% (SRK), 1.11%–7.13% (PR)
PR equation of state
[46]Helmholtz free energy explicit equation of stateVLE
[47]Reference state of hypothetical fluidSVESLE3.056% (RKS)
2.742% (PR)
0.160% (GERG-2008)
[48]PC-SAFT equation of stateVLESVESLE0.3%–2.80%
[49]Modified Dalton’s law of partial pressureSVE SLE15 (SVE) + 9 (SLE)1.64% (SVE),0.51% (SLE)
[50]Global Gibbs energy minimization algorithmSVE2.98% (SVE)
SLE180.7% (SLE)
SLVE2.0% (SLVE)
[51]Phase stability analysis algorithmSVE5.86% (SVE)
SLVE4.27% (SLVE)
Tab.2  Theoretical research on characteristics of CH4-CO2 binary mixture
Fig.2  Ryan-Holmes process.
Fig.3  Dual-pressure distillation tower process.
Fig.4  Extractive distillation process for CO2 separation (adapted with permission from Ref. [56].)
Fig.5  Process scheme of removal of CO2 from acid gas.
Fig.6  Principal process flow diagram of low-temperature CO2 removal from biogas.
Fig.7  A low-temperature removal of CO2 from biogas combining distillation and flash.
Fig.8  Cryogenic process based on frosting and defrosting.
Fig.9  Cryogenic sublimation capture process based on the expansion cycle.
Fig.10  Internal structure of the distillation tower of the CFZ process.
Fig.11  Flow diagram of the CryoCell process.
Fig.12  Schematic of the hybrid cryogenic distillation process.
AuthorRef.CO2 concentration in feed gas/(mole fraction)Operating conditionsProduct purity of CH4/(mole fraction)By-product purity of CO2/(mole fraction)Duty of distillation/MWSpecific energy consumption/(MJ?kg?1 CO2) MethodAdditive
Holmes and Ryan (1982)[53]50%Pressure: 3.44–4.13 MPa; trays: 5–18; reflux ratio: 1.0–5.2297.5%–99.02%97.9%–99.72%Reboiler: 1.25–3.23Condenser: 0.52–1.74PROCESSSM simulationn-butane
Valencia et al. (1985)[54]67%Pressure: 5.51 MPa; trays: 20; reflux ratio: 2.42Pipeline gas specificationsReboiler: 2.86Condenser: 0.91Exxon programHe
Atkinson et al. (1988)[55]7%Pressure: 4.2,4.995 MPa98.6%90%
Berstad et al. (2012)[9]50.6%Pressure: 4 MPa; trays: 19,14,62; reflux ratio: 1.69,1.57,1.6198.7%94.35%Reboiler: 63.1Condenser: 741.58HYSYS simulationC5+
Roussanaly et al. (2014)[57]50%Pressure: 4,4,3,1.6,1 MPa; trays: 19,14,6297.5%90.9%HYSYS simulationC5+
Pellegrini et al. (2014)[58]Up to 80%Pressure: 4.5–5.5, 3.8–4.3 MPa; trays: 15–3098%–99.9%99.9%RKS equation of state
Yousef et al. (2016–2019)[61]40%Pressure: 4.98 MPa; trays: 11; reflux ratio: 2.894.5%99.7%Reboiler: 1.371Condenser: 0.6841.377HYSYS simulation
[62]40%Pressure: 4.94 MPa; trays: 10; reflux ratio: 2.594.4%99.5%Reboiler: 0.119Condenser: 0.08051.66HYSYS simulation
[63]40%Pressure: 4.98 MPa, 4.76 MPa; trays: 13, 11; reflux ratio: 2.8, 2.897.12%99.92%Reboiler: 0.192Condenser: 0.12481.79HYSYS simulation
[64]40%Pressure: 4.91 MPa; trays: 15; reflux ratio: 3.08995.45%99.26%Reboiler: 0.0753Condenser: 0.10731.19HYSYS simulation
Tab.3  Differences between proposed CO2 removal techniques based on gas-liquid phase change
Ref.Feed gas composition (mole fraction)Feed gas conditionOperation conditionsEffectTotal energy/MJ·kg?1CO2)MethodProposed process
[67]81.39%N2 + 11.63%CO2 + 6.98%O2333 K, 0.12 MPaFrost: 156 K; defrost: 217 K, 0.52 MPa90%CO2 removal0.65–1.25ExperimentTwo alternate heat exchangers
[68]112 K5.7 × 10?6 ppm CO2Analysis and calculationHeat and mass transfer analysis
[69]1%CO2 + 99%CH4293 K, 0.7MPa132.5 K, 5 MPa2 × 10?3 ppmHYSYS simulationAnti-sublimation process
[70]75%N2 + 20%CO2 + 5%H2O373 K, 0.1 MPa123 KExperiment and simulationCryogenic bed
[71]15%CO2 + 7%H2O + 75%N2 + 3%O2312.8 K, 0.1 MPa155 K90%CO2 removal1.03Aspen Plus simulationAnti-sublimation process
[72]5%CO2 + 95%CH46 MPaExperimentCyclone separator
[7375]87%N2 + 13%CO2298 K168 K85%CO2 removal3.4Experiment and Numerical simulationStirling refrigerator
[76]80%N2 + 20%CO2300 K, 0.1 MPa0.106 MPa, 140-165 K41.2%–95.9% CO2 removal0.32–8.53Experiment and EES simulationCO2 sublimation visualization test
[77,78]99.5%CH4 + 0.5%CO2308.15 K, 15 MPa164.5 K, 1.5 MPa5 × 10?5 ppm CO2HYSYS simulationPLNG process
[79]40%CH4 + 59%CO2 + 0.5%H2S + H2O303 K, 0.150 MPa,195 K, 3.44 MPa3%(mole fraction) CO25.22 MJ/kg bio-LNGHYSYS simulationCryogenic upgrading bio-LNG plant
[80]75%, 90%CO2 + CH4133.4–167.4 K, 0.4–1.4 MPa0.09%–0.85% (mole fraction)CO20.094–2.5 MWHYSYS simulation and experimentCryogenic packed bed
[81]79.6%CH4 + 18.5% CO2 + 1.5%N2 + others311 K, 4.134 MPa183.7–226 K, 3.79 MPa0.234%(mole fraction) CO2Exxon programCFZ process
[82]31.3%CH4 + 58%CO2 + 9.7%N2 + others301.5 K, 7.2 MPa0.3%(mole fraction) CO220% less than SelexolExperimentCFZ process
[85]13%, 21%, 40%, 60%CO2 + CH4208–223 K, 5.5–6.5 MPa3%, 4%, 14%, and 26%(mole fraction) CO20.734–0.845CryoFlash and HYSYS simulationCryoCell process
[86]50%–70%CO2 + 39.7%–20%CH4 + others4 MPa0.006%–0.1%(mole fraction)CO2235–262 MWAspen Plus simulationHybrid cryogenic rectification network
Tab.4  Differences between proposed CO2 removal techniques based on gas-solid and combined phase change
AADAverage absolute deviation
CCSCO2 capture and storage
DEADiethanolamine
EOREnhanced oil recovery
GDPGross domestic product
HeHelium
LNGLiquefied natural gas
MDEAMethyldiethanolamine
MEAMonoethanolamine
NGNatural gas
PFHEPlate-fin heat exchanger
PLNGPressurized liquefied natural gas
ppmParts per million
PSAPressure swing adsorption
R-HRyan-Holmes
SLESolid-liquid equilibrium
SLVESolid-liquid-vapor equilibrium
SVESolid-vapor equilibrium
TSATemperature swing adsorption
VLEVapor-liquid equilibrium
PSAPressure swing adsorption
R-HRyan-Holmes
SLESolid-liquid equilibrium
SLVESolid-liquid-vapor equilibrium
SVESolid-vapor equilibrium
TSATemperature swing adsorption
VLEVapor-liquid equilibrium
  
1 S Zhou, M S Duan, Z Y Yuan. et al.. Peak CO2 emission in the region dominated by coal use and heavy chemical industries: a case study of Dezhou city in China. Frontiers in Energy, 2020, 14(4): 740–758
https://doi.org/10.1007/s11708-018-0558-y
2 H Wang, J He. China’s pre-2020 CO2 emission reduction potential and its influence. Frontiers in Energy, 2019, 13(3): 571–578
https://doi.org/10.1007/s11708-019-0640-0
3 X Zhang, Y Geng, Y W Tong. et al.. Trends and driving forces of low-carbon energy technology innovation in China’s industrial sectors from 1998 to 2017: from a regional perspective. Frontiers in Energy, 2021, 15(2): 473–486
https://doi.org/10.1007/s11708-021-0738-z
4 H Reineberg. Natural gas and LNG: future of electricity. Pipeline and Gas Journal, 2017, 244(9): 38–40
5 Y X Zhao, M Q Gong, H C Wang. et al.. Development of mobile miniature natural gas liquefiers. Frontiers in Energy, 2020, 14(4): 667–682
https://doi.org/10.1007/s11708-020-0695-y
6 R N Krikkis. A thermodynamic and heat transfer model for LNG ageing during ship transportation. Towards an efficient boil-off gas management. Cryogenics, 2018, 92: 76–83
https://doi.org/10.1016/j.cryogenics.2018.04.007
7 IGU. IGU 2018 World LNG Report. Barcelona: IGU, 2019
8 J T Wu, Y L Ju. Comprehensive comparison of small-scale natural gas liquefaction processes using brazed plate heat exchangers. Frontiers in Energy, 2020, 14(4): 683–698
https://doi.org/10.1007/s11708-020-0705-0
9 D Berstad, P Nekså, R Anantharaman. Low-temperature CO2 removal from natural gas. Energy Procedia, 2012, 26(26): 41–48
https://doi.org/10.1016/j.egypro.2012.06.008
10 Raney. Remove carbon dioxide with Selexol. Hydrocarbon Processing, 1976, 55(4)
11 G Hochgesand. Rectisol and purisol. Industrial & Engineering Chemistry, 1970, 62(7): 37–43
https://doi.org/10.1021/ie50727a007
12 M Bui, C S Adjiman, A Bardow. et al.. Carbon capture and storage (CCS): the way forward. Energy & Environmental Science, 2018, 11(5): 1062–1176
https://doi.org/10.1039/C7EE02342A
13 A A Olajire. CO2 capture and separation technologies for end-of-pipe applications—a review. Energy, 2010, 35(6): 2610–2628
https://doi.org/10.1016/j.energy.2010.02.030
14 A M Wolsky, E J Daniels, B J Jody. CO2 capture from the flue gas of conventional fossil-fuel-fired power plants. Environmental Progress & Sustainable Energy, 2010, 13(3): 214–219
https://doi.org/10.1002/ep.670130320
15 Z Wang. Adsorption separation of methane/carbon dioxide. Dissertation for the Master’s Degree. Tianjin: Tianjin University, 2003 (in Chinese)
16 M Z XiaL H YanW Lei, et al.. Separation and recovery technology and comprehensive utilization of carbon dioxide. Modern Chemical Industry, 1999, 19(5): 46–48 (in Chinese)
17 R W Baker, K Lokhandwala. Natural gas processing with membranes: an overview. Industrial & Engineering Chemistry Research, 2008, 47(7): 2109–2121
https://doi.org/10.1021/ie071083w
18 G L ShenX P Li. Theoretical research on the separation of carbon dioxide/methane by membrane. Membrane Science and Technology, 1994, (4): 29–33 (in Chinese)
19 Working Group III of the Intergovernmental Panel on Climate Change. IPCC Special Report on Carbon Dioxide Capture and Storage. Cambridge, UK: Cambridge University Press, 2005
20 K Maqsood, A Mullick, A Ali. et al.. Cryogenic carbon dioxide separation from natural gas: a review based on conventional and novel emerging technologies. Reviews in Chemical Engineering, 2014, 30(5): 453–477
https://doi.org/10.1515/revce-2014-0009
21 J D Figueroa, T Fout, S Plasynski. et al.. Advances in CO2 capture technology—the U. S. Department of Energy’s carbon sequestration program. International Journal of Greenhouse Gas Control, 2008, 2(1): 9–20
https://doi.org/10.1016/S1750-5836(07)00094-1
22 A D Ebner, J A Ritter. State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries. Separation Science and Technology, 2009, 44(6): 1273–1421
https://doi.org/10.1080/01496390902733314
23 N MacDowell, N Florin, A Buchard. et al.. An overview of CO2 capture technologies. Energy & Environmental Science, 2010, 3(11): 1645–1669
https://doi.org/10.1039/c004106h
24 T E Rufford, S Smart, G Watson. et al.. The removal of CO2 and N2 from natural gas: a review of conventional and emerging process technologies. Journal of Petroleum Science Engineering, 2012, 94-95: 123–154
https://doi.org/10.1016/j.petrol.2012.06.016
25 C Song, Q Liu, S Deng. et al.. Cryogenic-based CO2 capture technologies: state-of-the-art developments and current challenges. Renewable & Sustainable Energy Reviews, 2019, 101: 265–278
https://doi.org/10.1016/j.rser.2018.11.018
26 H G Donnelly, D L Katz. Phase equilibria in the carbon dioxide-methane system. Industrial & Engineering Chemistry, 1954, 46(3): 511–517
https://doi.org/10.1021/ie50531a036
27 M J Pikaar. A study of phase equilibria in hydrocarbon-CO2 systems. Dissertation for the Doctoral Degree. London: Imperial College London, 1959
28 J A Davis, N Rodewald, F Kurata. Solid-liquid-vapor phase behavior of the methane-carbon dioxide system. AIChE Journal, 1962, 8(4): 537–539
https://doi.org/10.1002/aic.690080423
29 F Kurata, K U Im. Phase equilibrium of carbon dioxide and light paraffins in presence of solid carbon dioxide. Journal of Chemical & Engineering Data, 1971, 16(3): 295–299
https://doi.org/10.1021/je60050a018
30 G M AgrawalR J Laverman. Phase behavior of the methane-carbon dioxide system in the solid-vapor region In: Timmerhaus K D, ed. Advances in Cryogenic Engineering. Boston, MA: Springer, 1995, 327–338
31 T T Le, M A Trebble. Measurement of carbon dioxide freezing in mixtures of methane, ethane, and nitrogen in the Solid−Vapor equilibrium region. Journal of Chemical & Engineering Data, 2007, 52(3): 683–686
https://doi.org/10.1021/je060194j
32 L Zhang, R Burgass, A Chapoy. et al.. Measurement and modeling of CO2 frost points in the CO2–methane systems. Journal of Chemical & Engineering Data, 2011, 56(6): 2971–2975
https://doi.org/10.1021/je200261a
33 T Shen, T Gao, W Lin. et al.. Determination of CO2 solubility in saturated liquid CH4 + N2 and CH4 + C2H6 mixtures above atmospheric pressure. Journal of Chemical & Engineering Data, 2012, 57(8): 2296–2303
https://doi.org/10.1021/je3002859
34 T Gao, T Shen, W Lin. et al.. Experimental determination of CO2 solubility in liquid CH4/N2 mixtures at cryogenic temperatures. Industrial & Engineering Chemistry Research, 2012, 51(27): 9403–9408
https://doi.org/10.1021/ie3002815
35 A D Thanaraju. Experimental measurement of dew points for high carbon dioxide natural gas. Final Year Project, Universiti Teknologi Petronas, 2013
36 X Xiong, W Lin, R Jia. et al.. Measurement and calculation of CO2 frost points in CH4 + CO2/CH4 + CO2 + N2/CH4 + CO2 + C2H6 mixtures at low temperatures. Journal of Chemical & Engineering Data, 2015, 60(11): 3077–3086
https://doi.org/10.1021/acs.jced.5b00059
37 X L Yi. Freezing calculation of CO2 in natural gas deep refrigerating separation equipment. Natural Gas Industry, 1988, 8(3): 74–77 (in Chinese)
38 L K Zhu, G L Chen. Model study on phase equilibrium of methane-carbon dioxide system at low temperature. Acta Petrolei Sinica (Petroleum Processing Section), 1988, 4(2): 33–42
39 B ZareNezhad, T Eggeman. Application of Peng–Robinson equation of state for CO2 freezing prediction of hydrocarbon mixtures at cryogenic conditions of gas plants. Cryogenics, 2006, 46(12): 840–845
https://doi.org/10.1016/j.cryogenics.2006.07.010
40 M W HlavinkaV N Hernandez. Proper interpretation of freezing and hydrate prediction results from process simulation. In: the 85th GPA Annual Convention Proceedings, Grapevine, USA, 2006
41 X C HuT GaoW S Lin. A preliminary study on carbon dioxide crystal precipitation in pressurized liquefied natural gas process. Cryogenics & Superconductivity, 2009, (06): 18–21 (in Chinese)
42 H JiangY HeC Zhu. A forecast model for the solid CO2 formation conditions in a CH4-CO2 system. Natural Gas Industry, 2011, 31(9): 112–115 (in Chinese)
43 X J XiongW S LinA Z Gu. Prediction of CO2 frosting temperature in CH4-CO2 binary system. Chemical Engineering of Oil & Gas, 2012, 41(2): 176–178, 186 (in Chinese)
44 M Riva, M Campestrini, J Toubassy. et al.. Solid–liquid–vapor equilibrium models for cryogenic biogas upgrading. Industrial & Engineering Chemistry Research, 2014, 53(44): 17506–17514
https://doi.org/10.1021/ie502957x
45 Guido G De, S Langè, S Moioli. et al.. Thermodynamic method for the prediction of solid CO2 formation from multicomponent mixtures. Process Safety and Environmental Protection, 2014, 92(1): 70–79
https://doi.org/10.1016/j.psep.2013.08.001
46 S Mao, L Shi, Q Peng. et al.. Thermodynamic modeling of binary CH4–CO2 fluid inclusions. Applied Geochemistry, 2016, 66: 65–72
https://doi.org/10.1016/j.apgeochem.2015.12.009
47 Y Li, C Gong, Y Li. Application of highly accurate phase-equilibrium models for CO2 freezing prediction of natural gas system. Industrial & Engineering Chemistry Research, 2016, 55(19): 5780–5787
https://doi.org/10.1021/acs.iecr.6b00339
48 M de Ozturk, S R Panuganti, K Gong. et al.. Modeling natural gas-carbon dioxide system for solid-liquid-vapor phase behavior. Journal of Natural Gas Science and Engineering, 2017, 45: 738–746
https://doi.org/10.1016/j.jngse.2017.06.011
49 L W Kong. Prediction of CO2 frosting temperature in CH4-CO2 binary system. Chemical Engineering of Oil & Gas, 2019, 48(2): 5 (in Chinese)
50 L Tang, C Li, S Lim. Solid-liquid-vapor equilibrium model applied for a CH4-CO2 binary mixture. Industrial & Engineering Chemistry Research, 2019, 58(39): 18355–18366
https://doi.org/10.1021/acs.iecr.9b02389
51 G de Guido, E Spatolisano. Simultaneous multiphase flash and stability analysis calculations including solid CO2 for CO2–CH4, CO2–CH4–N2, and CO2–CH4–N2–O2 mixtures. Journal of Chemical & Engineering Data, 2021, 66(11): 4132–4147
https://doi.org/10.1021/acs.jced.1c00330
52 X J XiongW S LinA Z Gu. Feasibility study on cryogenic separation of CH4-CO2 binary system. Cryogenics & Superconductivity, 2012, 40(001): 1–4 (in Chinese)
53 A S HolmesJ M Ryan. US Patent 4 318 723, 1982–3-9
54 J A ValenciaR D Denton. US Patent 4 511 382, 1985–04–16
55 T D AtkinsonJ T LavinD T Linnett. US Patent 4 759 786, 1988–07–26
56 B ZareNezhad, N Hosseinpour. An extractive distillation technique for producing CO2 enriched injection gas in enhanced oil recovery (EOR) fields. Energy Conversion and Management, 2009, 50(6): 1491–1496
https://doi.org/10.1016/j.enconman.2009.02.016
57 S Roussanaly, R Anantharaman, K Lindqvist. Multi-criteria analyses of two solvents and one low-temperature concepts for acid gas removal from natural gas. Journal of Natural Gas Science and Engineering, 2014, 20: 38–49
https://doi.org/10.1016/j.jngse.2014.05.027
58 Pellegrini L A. WO Patent 054945A2, 2014–04–10
59 Guido G De, S Langè, L A Pellegrini. Refrigeration cycles in low-temperature distillation processes for the purification of natural gas. Journal of Natural Gas Science and Engineering, 2015, 27: 887–900
https://doi.org/10.1016/j.jngse.2015.09.041
60 L A Pellegrini, Guido G De, S Langé. Biogas to liquefied biomethane via cryogenic upgrading technologies. Renewable Energy, 2018, 124: 75–83
https://doi.org/10.1016/j.renene.2017.08.007
61 A M I Yousef, Y A Eldrainy, W M El-Maghlany. et al.. Upgrading biogas by a low-temperature CO2 removal technique. Alexandria Engineering Journal, 2016, 55(2): 1143–1150
https://doi.org/10.1016/j.aej.2016.03.026
62 A M Yousef, W M El-Maghlany, Y A Eldrainy. et al.. Low-temperature distillation process for CO2/CH4 separation: a study for avoiding CO2 freeze-out. Journal of Heat Transfer, 2018, 140(4): 042001
https://doi.org/10.1115/1.4038193
63 A M Yousef, W M El-Maghlany, Y A Eldrainy. et al.. New approach for biogas purification using cryogenic separation and distillation process for CO2 capture. Energy, 2018, 156: 328–351
https://doi.org/10.1016/j.energy.2018.05.106
64 A M Yousef, W M El-Maghlany, Y A Eldrainy. et al.. Upgrading biogas to biomethane and liquid CO2: a novel cryogenic process. Fuel, 2019, 251: 611–628
https://doi.org/10.1016/j.fuel.2019.03.127
65 G Li, P Bai. New operation strategy for separation of ethanol–water by extractive distillation. Industrial & Engineering Chemistry Research, 2012, 51(6): 2723–2729
https://doi.org/10.1021/ie2026579
66 Y Takeuchi, S Hironaka, Y Shimada. et al.. Study on solidification of carbon dioxide using cold energy of liquefied natural gas. Heat Transfer, Asian Research, 2000, 29(4): 249–268
https://doi.org/10.1002/(SICI)1523-1496(2000)29:4<249::AID-HTJ1>3.0.CO;2-H
67 D ClodicR E HittiM Younes, et al.. CO2 capture by anti-sublimation thermo-economic process evaluation. In: 4th Annual Conference on Carbon Capture & Sequestration 2005, Alexandria, USA, 2005
68 H M Chang, M J Chung, S B Park. Cryogenic heat-exchanger design for freeze-out removal of carbon dioxide from landfill gas. Journal of Thermal Science and Technology, 2009, 4(3): 362–371
https://doi.org/10.1299/jtst.4.362
69 Y Bi, Y Ju. Design and analysis of CO2 cryogenic separation process for the new LNG purification cold box. International Journal of Refrigeration, 2021, 130: 67–75
https://doi.org/10.1016/j.ijrefrig.2021.05.036
70 M J Tuinier, M van Sint Annaland, G J Kramer. et al.. Cryogenic CO2 capture using dynamically operated packed beds. Chemical Engineering Science, 2010, 65(1): 114–119
https://doi.org/10.1016/j.ces.2009.01.055
71 M O Schach, B Oyarzún, H Schramm. et al.. Feasibility study of CO2 capture by anti-sublimation. Energy Procedia, 2011, 4: 1403–1410
https://doi.org/10.1016/j.egypro.2011.02.005
72 J LeeJ JungK Kim. Development of CO2 tolerant LNG production system. In: Offshore Technology Conference, Houston, Texas, USA, 2012
73 C Song, Y Kitamura, S Li. Evaluation of Stirling cooler system for cryogenic CO2 capture. Applied Energy, 2012, 98: 491–501
https://doi.org/10.1016/j.apenergy.2012.04.013
74 C Song, Y Kitamura, S Li. et al.. Analysis of CO2 frost formation properties in cryogenic capture process. International Journal of Greenhouse Gas Control, 2013, 13: 26–33
https://doi.org/10.1016/j.ijggc.2012.12.011
75 C Song, Y Kitamura, S Li. Energy analysis of the cryogenic CO2 capture process based on Stirling coolers. Energy, 2014, 65: 580–589
https://doi.org/10.1016/j.energy.2013.10.087
76 L C Yuan. Theoretical and experimental investigation of cryogenic CO2 capture by desublimation. Dissertation for the Master’s Degree. Hangzhou: Zhejiang University, 2015 (in Chinese)
77 W Lin, X Xiong, A Gu. Optimization and thermodynamic analysis of a cascade PLNG (pressurized liquefied natural gas) process with CO2 cryogenic removal. Energy, 2018, 161: 870–877
https://doi.org/10.1016/j.energy.2018.07.051
78 X Xiong, W Lin, A Gu. Integration of CO2 cryogenic removal with a natural gas pressurized liquefaction process using gas expansion refrigeration. Energy, 2015, 93: 1–9
https://doi.org/10.1016/j.energy.2015.09.022
79 A Baccioli, M Antonelli, S Frigo. et al.. Small scale bio-LNG plant: comparison of different biogas upgrading techniques. Applied Energy, 2018, 217: 328–335
https://doi.org/10.1016/j.apenergy.2018.02.149
80 M Babar, M A Bustam, A S Maulud. et al.. Enhanced cryogenic packed bed with optimal CO2 removal from natural gas: a joint computational and experimental approach. Cryogenics, 2020, 105: 103010
https://doi.org/10.1016/j.cryogenics.2019.103010
81 Valencia J A, Denton R D. US Patent, 4 533 372. 1985–08-06
82 E R Thomas, R D Denton. Conceptual studies for CO2/natural gas separation using the controlled freeze zone (CFZ) process. Gas Separation & Purification, 1988, 2(2): 84–89
https://doi.org/10.1016/0950-4214(88)80017-3
83 B T Kelley, J A Valencia, P S Northrop. et al.. Controlled freeze Zone™ for developing sour gas reserves. Energy Procedia, 2011, 4: 824–829
https://doi.org/10.1016/j.egypro.2011.01.125
84 E Michael, P E Parker, S Northrop. et al.. CO2 management at ExxonMobil’s LaBarge field, Wyoming, USA. Energy Procedia, 2011, 4: 5455–5470
https://doi.org/10.1016/j.egypro.2011.02.531
85 A Hart, N Gnanendran. Cryogenic CO2 capture in natural gas. Energy Procedia, 2009, 1(1): 697–706
https://doi.org/10.1016/j.egypro.2009.01.092
86 K Maqsood, J Pal, D Turunawarasu. et al.. Performance enhancement and energy reduction using hybrid cryogenic distillation networks for purification of natural gas with high CO2 content. Korean Journal of Chemical Engineering, 2014, 31(7): 1120–1135
https://doi.org/10.1007/s11814-014-0038-y
87 P Gao. Study on recovery of carbon dioxide from flue gas by simulation. Dissertation for the Master’s Degree. Qingdao: China University of Petroleum (East China), 2014 (in Chinese)
88 S Langè, L A Pellegrini, P Vergani. et al.. Energy and economic analysis of a new low-temperature distillation process for the upgrading of high-CO2 content natural gas streams. Industrial & Engineering Chemistry Research, 2015, 54(40): 9770–9782
https://doi.org/10.1021/acs.iecr.5b02211
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed