Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2022, Vol. 16 Issue (3) : 460-470    https://doi.org/10.1007/s11708-022-0825-9
RESEARCH ARTICLE
High heat flux thermal management through liquid metal driven with electromagnetic induction pump
Chuanke LIU, Zhizhu HE()
Department of Vehicle Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
 Download: PDF(2900 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, a novel liquid metal-based minichannel heat dissipation method was developed for cooling electric devices with high heat flux. A high-performance electromagnetic induction pump driven by rotating permanent magnets is designed to achieve a pressure head of 160 kPa and a flow rate of 3.24 L/min, which could enable the liquid metal to remove the waste heat quickly. The liquid metal-based minichannel thermal management system was established and tested experimentally to investigate the pumping capacity and cooling performance. The results show that the liquid metal cooling system can dissipate heat flux up to 242 W/cm2 with keeping the temperature rise of the heat source below 50°C. It could remarkably enhance the cooling performance by increasing the rotating speed of permanent magnets. Moreover, thermal contact resistance has a critical importance for the heat dissipation capacity. The liquid metal thermal grease is introduced to efficiently reduce the thermal contact resistance (a decrease of about 7.77 × 10−3 °C/W). This paper provides a powerful cooling strategy for thermal management of electric devices with large heat power and high heat flux.

Keywords high heat flux      liquid metal      electromagnetic pump      minichannel heat sink      thermal interface material     
Corresponding Author(s): Zhizhu HE   
Online First Date: 22 April 2022    Issue Date: 07 July 2022
 Cite this article:   
Chuanke LIU,Zhizhu HE. High heat flux thermal management through liquid metal driven with electromagnetic induction pump[J]. Front. Energy, 2022, 16(3): 460-470.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-022-0825-9
https://academic.hep.com.cn/fie/EN/Y2022/V16/I3/460
Coolant μ/(10?3kg·(m·s)?1) ρ/(kg·m?3) cp/(J·(kg·K)?1) k/(W·(m·K)?1) Pr
Ga68In20Sn12 2.22 6363 366 23.7 0.03
Water 1.003 997 4179 0.606 5.83
Tab.1  Thermophysical properties of Ga68In20Sn12 and water [30,40,41]
Fig.1  Illustration of the PM-EMP.
Fig.2  Illustration of the minichannel heat sink.
Fig.3  Description of the test loop.
Parameters G/% P/% T/°C Q/% Re/% R/%
Maximum uncertainty ±0.50 ±0.10 ±0.50 ±1.41 ±0.50 ±4.04
Tab.2  Uncertainty of main parameters
Fig.4  Pressure head versus flow rate at different rotational speeds.
Fig.5  Transient temperature rise of the cooling system when heat flux increases from 120 (581 W) to 138 W/cm2 (669 W) at n = 100 r/min.
Fig.6  Temperature of the thermal management system at a rotating speed of 200 r/min at different heat fluxes.
Fig.7  ΔTh versus q (100 r/min, 200 r/min, and 300 r/min)
Fig.8  Heat transfer characteristics of minichannel heat sink at different rotational speeds (from 100 to 300 r/min) at a heat flux of 165 W/cm2.
Fig.9  Fluid flow characteristic of minichannel heat sink at different rotational speeds (from 100 to 300 r/min) at a heat flux of 165 W/cm2.
Fig.10  Rcapacity and Rother versus rotational speed n (100, 200, 300 r/min).
n/(r·min?1) Rtotal/(10?2 °C·W?1) Rtotal/(10?2 °C·W?1) ε/%
100 5.091 3.860 24.18
200 4.050 3.035 25.06
300 3.735 2.713 27.36
Tab.3  Deviation between Rtotal and Rtotal at different rotating speeds
n/(r·min?1) Rtotal?LM/(10?2 °C·W?1)    Rtotal?Water/  (10?2 °C·W?1) a ( Rtotal?Water/ Rtotal?LM)
100 3.860 4.880   1.264   
200 3.035 4.360   1.437   
300 2.713 4.141   1.526   
Tab.4  Difference between Rtotal?LM and Rtotal?Water at different rotating speeds
a Minichannel aspect ratio
Dh Heat sink hydraulic diameter/mm
G Flow rate/(L·min?1)
hc Minichannel height/mm
hd Pump duct height/mm
hm Magnet height/mm
L Heat sink total length/mm
lc Minichannel length/mm
N Minichannel number
n Rotating speed of PM-EMP/(r·min?1)
P Pressure/Pa
ΔP Pressure difference of PM-EMP/Pa
ΔPh Pressure loss of heat sink/Pa
R Outer radius of rotor of PM-EMP/mm
R0 Inner radius of stator of PM-EMP/mm
T Temperature/°C
Ta Ambient temperature/°C
Tb Heat sink bottom temperature/°C
Th Heat source temperature/°C
Thi Heat sink inlet temperature/°C
Tho Heat sink outlet temperature/°C
Tri Radiator inlet temperature/°C
Tro Radiator outlet temperature/°C
ΔTh Heat source temperature rise/°C
ti Thickness of iron yoke of PM-EMP/mm
W Heat sink total width/mm
wc Minichannel width/mm
wm Magnet width/mm
ww Minichannel wall width/mm
  
1 X H Yang, J Liu. Advances in liquid metal science and technology in chip cooling and thermal management. Advances in Heat Transfer, 2018, 50 : 187– 300
https://doi.org/10.1016/bs.aiht.2018.07.002
2 M Hamidnia, Y Luo, X D Wang. Application of micro/nano technology for thermal management of high power LED packaging–a review. Applied Thermal Engineering, 2018, 145 : 637– 651
https://doi.org/10.1016/j.applthermaleng.2018.09.078
3 A Habibi Khalaj, Halgamuge S K A Review on efficient thermal management of air-and liquid-cooled data centers: from chip to the cooling system. Applied Energy, 2017, 205: 1165– 1188
4 Z Qian, Y Li, Z Rao. Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling. Energy Conversion and Management, 2016, 126 : 622– 631
https://doi.org/10.1016/j.enconman.2016.08.063
5 J Lee, S Ki, D Seo. et al.. Liquid cooling module incorporating a metal foam and fin hybrid structure for high power insulated gate bipolar transistors (IGBTs). Applied Thermal Engineering, 2020, 173 : 115230
https://doi.org/10.1016/j.applthermaleng.2020.115230
6 D Liu, F Y Zhao, H X Yang. et al.. Thermoelectric mini cooler coupled with micro thermosiphon for CPU cooling system. Energy, 2015, 83 : 29– 36
https://doi.org/10.1016/j.energy.2015.01.098
7 L T Yeh. Review of heat transfer technologies in electronic equipment. Journal of Electronic Packaging, 1995, 117( 4): 333– 339
https://doi.org/10.1115/1.2792113
8 D B Tuckerman, R F W Pease. High-performance heat sinking for VLSI. IEEE Electron Device Letters, 1981, 2( 5): 126– 129
https://doi.org/10.1109/EDL.1981.25367
9 Z Feng, P Li. Fast thermal analysis on GPU for 3D ICs with integrated microchannel cooling. IEEE Transactions on Very Large Scale Integration Systems, 2012, 21( 8): 1526– 1539
https://doi.org/10.1109/TVLSI.2012.2211050
10 R Chein, J Chuang. Experimental microchannel heat sink performance studies using nanofluids. International Journal of Thermal Sciences, 2007, 46( 1): 57– 66
https://doi.org/10.1016/j.ijthermalsci.2006.03.009
11 T Dixit, I Ghosh. Review of micro-and mini-channel heat sinks and heat exchangers for single phase fluids. Renewable & Sustainable Energy Reviews, 2015, 41 : 1298– 1311
https://doi.org/10.1016/j.rser.2014.09.024
12 M Mahalingam. Thermal management in semiconductor device packaging. Proceedings of the IEEE, 1985, 73( 9): 1396– 1404
https://doi.org/10.1109/PROC.1985.13300
13 S S Mehendale, A M Jacobi, R K Shah. Fluid flow and heat transfer at micro-and meso-scales with application to heat exchanger design. Applied Mechanics Reviews, 2000, 53( 7): 175– 193
https://doi.org/10.1115/1.3097347
14 A Muhammad, D Selvakumar, J Wu. Numerical investigation of laminar flow and heat transfer in a liquid metal cooled mini-channel heat sink. International Journal of Heat and Mass Transfer, 2020, 150 : 119265
https://doi.org/10.1016/j.ijheatmasstransfer.2019.119265
15 X L Xie, Z J Liu, Y L He. et al.. Numerical study of laminar heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink. Applied Thermal Engineering, 2009, 29( 1): 64– 74
https://doi.org/10.1016/j.applthermaleng.2008.02.002
16 M R Sohel, S S Khaleduzzaman, R Saidur. et al.. An experimental investigation of heat transfer enhancement of a minichannel heat sink using Al2O3-H2O nanofluid. International Journal of Heat and Mass Transfer, 2014, 74 : 164– 172
https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.010
17 A Ijam, R Saidur, P Ganesan. Cooling of minichannel heat sink using nanofluids. International Communications in Heat and Mass Transfer, 2012, 39( 8): 1188– 1194
https://doi.org/10.1016/j.icheatmasstransfer.2012.06.022
18 X Liu, J Yu. Numerical study on performances of mini-channel heat sinks with non-uniform inlets. Applied Thermal Engineering, 2016, 93 : 856– 864
https://doi.org/10.1016/j.applthermaleng.2015.09.032
19 T C Hung, W M Yan, W P Li. Analysis of heat transfer characteristics of double-layered microchannel heat sink. International Journal of Heat and Mass Transfer, 2012, 55( 11−12): 3090– 3099
https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.038
20 X H Yang, S C Tan, Y J Ding. et al.. Flow and thermal modeling and optimization of micro/mini-channel heat sink. Applied Thermal Engineering, 2017, 117 : 289– 296
https://doi.org/10.1016/j.applthermaleng.2016.12.089
21 H Wang, Z Chen, J Gao. Influence of geometric parameters on flow and heat transfer performance of micro-channel heat sinks. Applied Thermal Engineering, 2016, 107 : 870– 879
https://doi.org/10.1016/j.applthermaleng.2016.07.039
22 J Lee, I Mudawar. Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels. International Journal of Heat and Mass Transfer, 2007, 50( 3−4): 452– 463
https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.001
23 Q Wang, Y Yu, J Liu. Preparations, characteristics and applications of the functional liquid metal materials. Advanced Engineering Materials, 2018, 20( 5): 1700781
https://doi.org/10.1002/adem.201700781
24 L X Cao, T Yin, M X Jin. et al.. Flexible circulated-cooling liquid metal coil for induction heating. Applied Thermal Engineering, 2019, 162 : 114260
https://doi.org/10.1016/j.applthermaleng.2019.114260
25 I A de Castro, A F Chrimes, A Zavabeti. et al.. A gallium-based magnetocaloric liquid metal ferrofluid. Nano Letters, 2017, 17( 12): 7831– 7838
https://doi.org/10.1021/acs.nanolett.7b04050
26 J Gu, J She, Y Yue. Micro/nanoscale thermal characterization based on spectroscopy techniques. ES Energy & Environment, 2020, 9( 2): 15– 27
https://doi.org/10.30919/esee8c260
27 X D Zhang, Y X Zhou, J Liu. A novel layered stack electromagnetic pump towards circulating metal fluid: design, fabrication and test. Applied Thermal Engineering, 2020, 179 : 115610
https://doi.org/10.1016/j.applthermaleng.2020.115610
28 M Tawk, Y Avenas, A Kedous-Lebouc. et al.. Numerical and experimental investigations of the thermal management of power electronics with liquid metal mini-channel coolers. IEEE Transactions on Industry Applications, 2013, 49( 3): 1421– 1429
https://doi.org/10.1109/TIA.2013.2252132
29 P Sun, H Zhang, F C Jiang. et al.. Self-driven liquid metal cooling connector for direct current high power charging to electric vehicle. eTransportation, 2021, 10 : 100132
https://doi.org/10.1016/j.etran.2021.100132
30 X D Zhang, X H Yang, Y X Zhou. et al.. Experimental investigation of galinstan based minichannel cooling for high heat flux and large heat power thermal management. Energy Conversion and Management, 2019, 185 : 248– 258
https://doi.org/10.1016/j.enconman.2019.02.010
31 X Zhou, M Gao, L Gui. A liquid-metal based spiral magnetohydrodynamic micropump. Micromachines, 2017, 8( 12): 365
https://doi.org/10.3390/mi8120365
32 Y Wang, P Zhang, S Tan. et al.. Experimental and numerical analysis on a compact liquid metal blade heat dissipator with twin stage electromagnetic pumps. International Communications in Heat and Mass Transfer, 2019, 104 : 15– 22
https://doi.org/10.1016/j.icheatmasstransfer.2019.02.020
33 I E Bucenieks. Perspectives of using rotating permanent magnets in the design of electromagnetic induction pumps. Magnetohydrodynamics, 2000, 151– 156
34 X Wang, Y Kolesnikov. A numerical visualization of physical fields in an electromagnetic pump with rotating permanent magnets. Magnetohydrodynamics, 2014, 50( 2): 139– 156
https://doi.org/10.22364/mhd.50.2.3
35 E Koroteeva, M Ščepanskis, I Bucenieks. et al.. Numerical modeling and design of a disk-type rotating permanent magnet induction pump. Fusion Engineering and Design, 2016, 106 : 85– 92
https://doi.org/10.1016/j.fusengdes.2016.03.030
36 I E Bucenieks. High pressure and high flowrate induction pumps with permanent magnets. Magnetohydrodynamics, 2003, 39( 4): 411– 418
https://doi.org/10.22364/mhd.39.4.4
37 M G Hvasta, W K Nollet, M H Anderson. Designing moving magnet pumps for high-temperature, liquid-metal systems. Nuclear Engineering and Design, 2018, 327 : 228– 237
https://doi.org/10.1016/j.nucengdes.2017.11.004
38 S M H Mirhoseini, R R Diaz-Pacheco, F A Volpe. Passive and active electromagnetic stabilization of free-surface liquid metal flows. Magnetohydrodynamics, 2017, 53( 1): 45– 54
https://doi.org/10.22364/mhd.53.1.6
39 A Bojarevics, T Beinerts, Y Gelfgat. et al.. Permanent magnet centrifugal pump for liquid aluminium stirring. International Journal of Cast Metals Research, 2016, 29( 3): 154– 157
https://doi.org/10.1080/13640461.2015.1120998
40 A Miner, U Ghoshal. Cooling of high-power-density microdevices using liquid metal coolants. Applied Physics Letters, 2004, 85( 3): 506– 508
https://doi.org/10.1063/1.1772862
41 T L Bergman F P Incropera D P DeWitt. Fundamentals of Heat and Mass Transfer. New York: John Wiley & Sons, 2011
42 D Liu, S V Garimella. Analysis and optimization of the thermal performance of microchannel heat sinks. International Journal of Numerical Methods for Heat & Fluid Flow, 2005, 15( 1): 7– 26
https://doi.org/10.1108/09615530510571921
43 T M Harms, M J Kazmierczak, F M Gerner. Developing convective heat transfer in deep rectangular microchannels. International Journal of Heat and Fluid Flow, 1999, 20( 2): 149– 157
https://doi.org/10.1016/S0142-727X(98)10055-3
44 J P Holman W J Gajda. Experimental Methods for Engineers. 5th ed. New York: McGraw-Hill, 1989
[1] Zerong XING, Junheng FU, Sen CHEN, Jianye GAO, Ruiqi ZHAO, Jing LIU. Perspective on gallium-based room temperature liquid metal batteries[J]. Front. Energy, 2022, 16(1): 23-48.
[2] Ferry ROELOFS, Antoine GERSCHENFELD, Katrien Van TICHELEN. Liquid metal thermal hydraulics R&D at European scale: achievements and prospects[J]. Front. Energy, 2021, 15(4): 842-853.
[3] Shengchun ZHANG, Zhifeng WANG, Hui BIAN, Pingrui HUANG. Thermal performance of a single-layer packed metal pebble-bed exposed to high energy fluxes[J]. Front. Energy, 2021, 15(2): 513-528.
[4] Junheng FU, Chenglin ZHANG, Tianying LIU, Jing LIU. Room temperature liquid metal: its melting point, dominating mechanism and applications[J]. Front. Energy, 2020, 14(1): 81-104.
[5] Shen GUO, Peng WANG, Jichuan ZHANG, Wenpeng LUAN, Zishuo XIA, Lingxiao CAO, Zhizhu HE. Flexible liquid metal coil prepared for electromagnetic energy harvesting and wireless charging[J]. Front. Energy, 2019, 13(3): 474-482.
[6] Xu-Dong ZHANG, Yue SUN, Sen CHEN, Jing LIU. Unconventional hydrodynamics of hybrid fluid made of liquid metals and aqueous solution under applied fields[J]. Front. Energy, 2018, 12(2): 276-296.
[7] Xiao-Hu YANG, Jing LIU. Liquid metal enabled combinatorial heat transfer science: toward unconventional extreme cooling[J]. Front. Energy, 2018, 12(2): 259-275.
[8] Xi ZHAO, Shuo XU, Jing LIU. Surface tension of liquid metal: role, mechanism and application[J]. Front. Energy, 2017, 11(4): 535-567.
[9] Yujie DING,Jing LIU. Water film coated composite liquid metal marble and its fluidic impact dynamics phenomenon[J]. Front. Energy, 2016, 10(1): 29-36.
[10] Yunxia GAO, Lei WANG, Haiyan LI, Jing LIU. Liquid metal as energy transportation medium or coolant under harsh environment with temperature below zero centigrade[J]. Front Energ, 2014, 8(1): 49-61.
[11] Manli LUO, Jing LIU. Experimental investigation of liquid metal alloy based mini-channel heat exchanger for high power electronic devices[J]. Front Energ, 2013, 7(4): 479-486.
[12] Lei WANG, Jing LIU. Liquid metal material genome: Initiation of a new research track towards discovery of advanced energy materials[J]. Front Energ, 2013, 7(3): 317-332.
[13] Qin ZHANG, Yi ZHENG, Jing LIU. Direct writing of electronics based on alloy and metal (DREAM) ink: A newly emerging area and its impact on energy, environment and health sciences[J]. Front Energ, 2012, 6(4): 311-340.
[14] Dan DAI, Jing LIU, Yixin ZHOU. Harvesting biomechanical energy in the walking by shoe based on liquid metal magnetohydrodynamics[J]. Front Energ, 2012, 6(2): 112-121.
[15] Haiyan LI, Jing LIU. Revolutionizing heat transport enhancement with liquid metals: Proposal of a new industry of water-free heat exchangers[J]. Front Energ, 2011, 5(1): 20-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed