Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2022, Vol. 16 Issue (4) : 542-547    https://doi.org/10.1007/s11708-022-0834-8
VIEWPOINT
Liquid metal printing opening the way for energy conservation in semiconductor manufacturing industry
Qian LI1, Jing LIU2()
1. Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
2. Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
 Download: PDF(1002 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Jing LIU   
Online First Date: 29 August 2022    Issue Date: 21 October 2022
 Cite this article:   
Qian LI,Jing LIU. Liquid metal printing opening the way for energy conservation in semiconductor manufacturing industry[J]. Front. Energy, 2022, 16(4): 542-547.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-022-0834-8
https://academic.hep.com.cn/fie/EN/Y2022/V16/I4/542
Fig.1  Three representative principles to manufacture semiconductor and their working temperature conditions (Redrawn from Ref. [1]).
1 Q Li B D Du J Y Gao, et al.. Room-temperature printing of ultrathin quasi-2D GaN semiconductor via liquid metal gallium surface confined nitridation reaction. Advanced Materials Technologies, 2022, online, https://doi.org/10.1002/admt.202200733
2 Q Zhang, Y Zheng, J Liu. Direct writing of electronics based on alloy and metal (DREAM) ink: a newly emerging area and its impact on energy, environment and health sciences. Frontiers in Energy, 2012, 6( 4): 311– 340
https://doi.org/10.1007/s11708-012-0214-x
3 J Liu Q Wang. Liquid Metal Printed Electronics. Shanghai: Shanghai Science & Technology Press, 2019 (in Chinese)
4 Y X Gao, H Y Li, J Liu. Direct writing of flexible electronics through room temperature liquid metal ink. PLoS One, 2012, 7( 9): e45485
https://doi.org/10.1371/journal.pone.0045485
5 Y X Gao, J Liu. Gallium-based thermal interface material with high compliance and wettability. Applied Physics. A, Materials Science & Processing, 2012, 107( 3): 701– 708
https://doi.org/10.1007/s00339-012-6887-5
6 J Lin, Q Li, T Y Liu. et al.. Printing of quasi 2D semiconducting β-Ga2O3 in constructing electronic devices via room temperature liquid metal oxide skin. Physica Status Solidi. Rapid Research Letters, 2019, 13( 9): 1900271
https://doi.org/10.1002/pssr.201900271
7 J Cooke, L Ghadbeigi, R J Sun. et al.. Synthesis and characterization of large-area nanometer-thin β-Ga2O3 films from oxide printing of liquid metal gallium. Physica Status Solidi. A, Applications and Materials Science, 2020, 217( 10): 1901007
https://doi.org/10.1002/pssa.201901007
8 K A Messalea, B J Carey, A Jannat. et al.. Bi2O3 monolayers from elemental liquid bismuth. Nanoscale, 2018, 10( 33): 15615– 15623
https://doi.org/10.1039/C8NR03788D
9 Q Li, J Lin, T Y Liu, X Y Zhu. et al.. Gas-mediated liquid metal printing toward large-scale 2D semiconductors and ultraviolet photodetector. npj 2D Materials and Applications, 2021, 5 : 36
https://doi.org/10.1038/s41699-021-00219-y
10 T B Yuan, Z Hu, Y X Zhao. et al.. Two-dimensional amorphous SnOx from liquid metal: mass production, phase transfer, and electrocatalytic CO2 reduction toward formic acid. Nano Letters, 2020, 20( 4): 2916– 2922
https://doi.org/10.1021/acs.nanolett.0c00844
11 N Syed, A Zavabeti, J Z Ou. et al.. Printing two-dimensional gallium phosphate out of liquid metal. Nature Communications, 2018, 9( 1): 3618
https://doi.org/10.1038/s41467-018-06124-1
12 Y X Chen, K L Liu, J X Liu. et al.. Growth of 2D GaN single crystals on liquid metals. Journal of the American Chemical Society, 2018, 140( 48): 16392– 16395
https://doi.org/10.1021/jacs.8b08351
13 B J Carey, J Z Ou, R M Clark. et al.. Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals. Nature Communications, 2017, 8( 1): 14482
https://doi.org/10.1038/ncomms14482
14 M Y A Alsaif, N Pillai, S Kuriakose. et al.. Atomically thin Ga2S3 from skin of liquid metals for electrical, optical, and sensing applications. ACS Applied Nano Materials, 2019, 2( 7): 4665– 4672
https://doi.org/10.1021/acsanm.9b01133
15 L Wang, J Liu. Liquid metal material genome: initiation of a new research track towards discovery of advanced energy materials. Frontiers in Energy, 2013, 7( 3): 317– 332
https://doi.org/10.1007/s11708-013-0271-9
16 C Wei, H Fei, Y Tian. et al.. Isotropic Li nucleation and growth achieved by an amorphous liquid metal nucleation seed on MXene framework for dendrite-free Li metal anode. Energy Storage Materials, 2020, 26 : 223– 233
https://doi.org/10.1016/j.ensm.2020.01.005
17 J Liu. Printable semiconductive device and its fabrication method. China Patent, 2012103572802, 2012 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed