Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2023, Vol. 17 Issue (1) : 72-101    https://doi.org/10.1007/s11708-022-0835-7
REVIEW ARTICLE
Chemisorption solid materials for hydrogen storage near ambient temperature: a review
Yiheng ZHANG, Shaofei WU, Liwei WANG(), Xuefeng ZHANG
Key Laboratory of Power Machinery and Engineering of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(3123 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Solid chemisorption technologies for hydrogen storage, especially high-efficiency hydrogen storage of fuel cells in near ambient temperature zone defined from − 20 to 100°C, have a great application potential for realizing the global goal of carbon dioxide emission reduction and vision of carbon neutrality. However, there are several challenges to be solved at near ambient temperature, i.e., unclear hydrogen storage mechanism, low sorption capacity, poor sorption kinetics, and complicated synthetic procedures. In this review, the characteristics and modification methods of chemisorption hydrogen storage materials at near ambient temperature are discussed. The interaction between hydrogen and materials is analyzed, including the microscopic, thermodynamic, and mechanical properties. Based on the classification of hydrogen storage metals, the operation temperature zone and temperature shifting methods are discussed. A series of modification and reprocessing methods are summarized, including preparation, synthesis, simulation, and experimental analysis. Finally, perspectives on advanced solid chemisorption materials promising for efficient and scalable hydrogen storage systems are provided.

Keywords hydrogen storage capacity      chemisorption      near-ambient-temperature      modification methods      alloy hydrides     
Corresponding Author(s): Liwei WANG   
Online First Date: 26 September 2022    Issue Date: 29 March 2023
 Cite this article:   
Yiheng ZHANG,Shaofei WU,Liwei WANG, et al. Chemisorption solid materials for hydrogen storage near ambient temperature: a review[J]. Front. Energy, 2023, 17(1): 72-101.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-022-0835-7
https://academic.hep.com.cn/fie/EN/Y2023/V17/I1/72
Fig.1  Octahedral and tetrahedral interstitial sites in the FCC, the HCP, and the BCC structure.
Intermetallic compound Prototype Hydrides Structure
AB5 LaNi5 LaNi5H6 Haucke phases, hexagonal
AB2 ZrV2, ZrMn2, TiMn2 ZrV2H5.5 Laves phase, hexagonal or cubic
AB3 CeNi3, YFe3 CeNi3H4 Hexagonal, PuNi3 type
A2B7 Y2Ni7, Th2Fe7 Y2Ni7H3 Hexagonal, Ce2Ni7 type
A6B23 Y6Fe23 Ho6Fe23H12 Cubic, Th6Mn23 type
AB TiFe, ZrNi TiFeH2 Cubic, CsCl or CrB type
A2B Mg2Ni, Ti2Ni Mg2NiH4 Cubic, MoSi2 or Ti2Ni type
Tab.1  Most important families of intermetallic compounds forming hydrides including the prototype and the structure [40]
Fig.2  Unit cell characteristic of Laves phases (adapted with permission from Refs. [41,42]).
Fig.3  Metal-hydrogen phase equilibrium diagram and the schematic diagram of lattice (adapted with permission from Ref. [33]).
Fig.4  Emphasized area representing the ideal working temperature and pressure range (adapted with permission from Refs. [42,50]).
Fig.5  Experiment results of magnesium hydride doping Ti intermetallic catalysts (adapted with permission from Ref. [69]).
Fig.6  Crystal structures and hydrogen storage performance of doped Mg hydride.
Based material Additive material Method Capacity /wt.% Pressure /bar Tsorption /°C Tdesorption /°C Ref.
MgH2 Ultrasound-driven liquid-solid phase metathesis strategy 6.7 30 30 30 [63]
MgH2 Nanoparticle Fe, Co, Ni, and Cu Doping catalysts 6.5 30 150–250 [22]
MgH2 Ti intermetallic Doping catalysts 3.3/5.1 1 25 ?3 [69]
MgH2 Mg vacancies and hydrogen doping First principles calculations 9.816 16–120 [73]
MgH2 Metals First principles calculations, Monte Carlo simulations 7.081–7.660 10 360 53–176 [74]
MgH2 Metals Alloying 0.7 100 32 32 [75]
Tab.2  Mg-based materials and the properties
Fig.7  Reactor system for hydrogen generation by reacting with water vapor (adapted with permission from Ref. [77]).
Fig.8  P-C-T curve of Ca-based composites under various conditions (Refs. [8183]).
Fig.9  Optimized atomic geometries of Ca-decorated defective boron nitride nanosheets (adapted with permission from Ref. [87]).
Based material Additive material Method Capacity/(wt. %) Pressure/bar Tsorption/°C Tdesorption/°C Ref.
Ca Ni Alloying 1.9 25 25 25 [23]
Ca Ni Alloying 1.48 0.1–0.5 10–80 10–80 [34]
CaNi5 Zr, Cr Metal Substitute 1.04/1.05/0.85 0.42–0.72 25 25 [81]
Ca Mg, Ni Alloying 0.85–1.56 0.4–12 30 30 [82]
Ca Mg, Ni Alloying 1.71/1.23 30 25 25 [83]
CaNi5 Pd Alloying 0.8 1 25 25 [8486]
CaH2 Mg17Al12 Inducing and hydrolysis 13.6 40–50 ? 70 [78]
Tab.3  Ca-based materials and the properties
Based material Additive material Capacity/(wt. %) Ref.
BNNT Ca 6.4/6.9 [87]
B40 fullerene Ca 6.66 [88]
C60 fullerene Ca 8.4 [89]
Graphene Ca 8.4 [90]
Graphene Ca 5 [91]
Graphene Ca 7.69 [92]
Tab.4  Simulation results of Ca-based materials
Based material Additive material Method Capacity /(wt. %) Pressure/bar Tsorption/°C Tdesorption/°C Ref.
Alanate Be Doping element 19 50 250 [95]
TiFe Be Alloying 1.4 10–20 50 10–20 [96]
LiH Be Alloying 8.7 40 270-300 150 [59]
Single-walled carbon nanotubes Be First principles/molecular dynamics calculations 16 267 25 25 [101]
Be B First principles calculations 25.3/21.1 27 27 [99]
Graphene B, Be First principles calculations 12.4 27 27 [97]
BeO Nano cage First principles calculations 7.64 [102]
Tab.5  Be-based materials and properties
Fig.10  Cyclic performance of LaNi5-xCox alloys in hydrogen (adapted with permission from Ref. [24]).
Based material Additive material Method Capacity/(wt. %) Pressure/bar Tsorption/°C Tdesorption/°C Ref.
LaNi5 Co Alloying 1.561 30 70–110 70–110 [24]
LaNi5 Al Alloying 1.4 65 70 70 [103]
MmNi5 w(La) = 22%, w(Ce) = 52%, w(Nd) = 15%, w(Pr) = 11% Mechanical modification 1.5 90 27 27 [25]
MmNi5 Al Alloying 1.3/1.5 25–35 30 0 [104]
Tab.6  Rare-earth metal and properties
Fig.11  Model and results of LaNi5-based hydrogen storage reactor (adapted with permission from Ref. [105]).
Fig.12  Proportion of the research aspects in metal hydride hydrogen storage system (adapted with permission from Ref. [110]).
Fig.13  Passive enhancements of heat transfer in metal hydride hydrogen storage system.
Fig.14  Isotherm section at 1000? °C of the Ti-Fe-Mn phase and investigated compositions (dots in blue, zoomed and labeled in the up left corner) (adapted with permission from Ref. [125]).
Based material Additive material Method Capacity /(wt. %) Pressure /bar Tsorption /°C Tdesorption /°C Ref.
TiFe Hexane (C6H14) and ethanol (CH3CH2OH) Mechanical modification 1.2 30 25 25 [26]
TiFe Mn Alloying 1.63 50 25 25 [125]
TiFe Cr, Mn, Y Alloying 1.4 30 10–50 10–50 [126]
Ti Mn, Cr, Zr, V Alloying 1.88 26.4–93.7 30–90 30–90 [27]
Ti, Mn V, Zr, Cr, Fe Alloying 1.7 15–350 27–50 27–50 [127]
C24 fullerene Ti First principles calculations 10.5 0–50 ?173 to 27 ?28 to 253 [128]
borophene χ3 Ti First principles calculations 15.065 [131]
Zigzag graphene nanoribbons Ti First principles calculations 6.4 25 25 [132]
Tab.7  Ti-based materials and the properties
Fig.15  Automotive storage of hydrogen in alane (adapted with permission from Ref. [29]).
Based material Additive material Method Capacity/(wt. %) Pressure/bar Tsorption/°C Tdesorption/°C Ref.
Alane Simulation 4.2 200 200 [29]
Alane Nano-confining 0.25 60 150 60–155 [134]
AlH3 TiO2 and Pr6O11 Ball milling 8.3 43 [135]
NaAlH4 TiCl3 Composition / 148–220 148–220 [136]
Na3AlH6 Ti/TiCl3 Doping 1.7 25 170 170 [137]
Tab.8  Al-based materials and properties
Fig.16  Formation of coarse grains of C14 Laves phase and fine grains of Ti- and Ni-rich cubic phase in high-entropy alloy TiZrMnCrFeNi (adapted with permission from Ref. [140]).
Based material Additive material Method Capacity/(wt. %) Pressure/bar Tsorption/°C Tdesorption/°C Ref.
TiVZrHfNb Composition 1.2 2–20 300 100–400 [30]
TiVZrNb Mg Doping 2.7 25 25 25 [139]
TiZrCrMnFeNi Alloying 1.7 100 30 30 [140]
TiZrNbMoV Laser engineerednet shaping 2.3 85 50 29 [142]
(Ti0.85Zr0.15)1.05Mn1.2Cr0.6V0.1 Ni, Fe and Cu Doping 1.81/1.58 40 0/45 [143]
TiZrVMoNb First principles calculations 2.65 50 302 [144,145]
Tab.9  HEA and properties
Fig.17  Preparation technics of polyetherimide-LaNi5 composite films (adapted with permission from Ref. [31]).
Based material Additive material Method Capacity/(wt. %) Pressure/bar Tsorption/°C Tdesorption/°C Ref.
LaNi5 Polyetherimide 0.6 20 43 [31]
Mg Pd Film 5 1 100 87 [146]
Mg Pd Film 3.5 1.5 70 150 [147]
Tab.10  Metal films and properties
1 N Z Muradov, T N Veziroğlu. “Green” path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies. International Journal of Hydrogen Energy, 2008, 33( 23): 6804– 6839
https://doi.org/10.1016/j.ijhydene.2008.08.054
2 T Egeland-Eriksen, A Hajizadeh, S Sartori. Hydrogen-based systems for integration of renewable energy in power systems: achievements and perspectives. International Journal of Hydrogen Energy, 2021, 46( 63): 31963– 31983
https://doi.org/10.1016/j.ijhydene.2021.06.218
3 O Sandri, S Holdsworth, J Hayes. et al.. Hydrogen for all? Household energy vulnerability and the transition to hydrogen in Australia. Energy Research & Social Science, 2021, 79 : 102179
https://doi.org/10.1016/j.erss.2021.102179
4 I A Hassan, H S Ramadan, M A Saleh. et al.. Hydrogen storage technologies for stationary and mobile applications: review, analysis and perspectives. Renewable & Sustainable Energy Reviews, 2021, 149 : 111311
https://doi.org/10.1016/j.rser.2021.111311
5 Y Ma, X R Wang, T Li. et al.. Hydrogen and ethanol: production, storage, and transportation. International Journal of Hydrogen Energy, 2021, 46( 54): 27330– 27348
https://doi.org/10.1016/j.ijhydene.2021.06.027
6 Z Hu, M Chen, B Pan. Simulation and burst validation of 70 MPa type IV hydrogen storage vessel with dome reinforcement. International Journal of Hydrogen Energy, 2021, 46( 46): 23779– 23794
https://doi.org/10.1016/j.ijhydene.2021.04.186
7 H S Roh, T Q Hua, R K Ahluwalia. Optimization of carbon fiber usage in Type 4 hydrogen storage tanks for fuel cell automobiles. International Journal of Hydrogen Energy, 2013, 38( 29): 12795– 12802
https://doi.org/10.1016/j.ijhydene.2013.07.016
8 M S Sadaghiani, M Mehrpooya. Introducing and energy analysis of a novel cryogenic hydrogen liquefaction process configuration. International Journal of Hydrogen Energy, 2017, 42( 9): 6033– 6050
https://doi.org/10.1016/j.ijhydene.2017.01.136
9 A M Elberry, J Thakur, A Santasalo-Aarnio. et al.. Large-scale compressed hydrogen storage as part of renewable electricity storage systems. International Journal of Hydrogen Energy, 2021, 46( 29): 15671– 15690
https://doi.org/10.1016/j.ijhydene.2021.02.080
10 J Andersson, S Grönkvist. Large-scale storage of hydrogen. International Journal of Hydrogen Energy, 2019, 44( 23): 11901– 11919
https://doi.org/10.1016/j.ijhydene.2019.03.063
11 S Krasae-in, J H Stang, P Neksa. Development of large-scale hydrogen liquefaction processes from 1898 to 2009. International Journal of Hydrogen Energy, 2010, 35( 10): 4524– 4533
https://doi.org/10.1016/j.ijhydene.2010.02.109
12 N A Ali, N A Sazelee, M Ismail. An overview of reactive hydride composite (RHC) for solid-state hydrogen storage materials. International Journal of Hydrogen Energy, 2021, 46( 62): 31674– 31698
https://doi.org/10.1016/j.ijhydene.2021.07.058
13 M Doğan, P Sabaz, Z Bi̇ci̇l. et al.. Activated carbon synthesis from tangerine peel and its use in hydrogen storage. Journal of the Energy Institute, 2020, 93( 6): 2176– 2185
https://doi.org/10.1016/j.joei.2020.05.011
14 A C Dillon, K M Jones, T A Bekkedahl. et al.. Storage of hydrogen in single-walled carbon nanotubes. Nature, 1997, 386( 6623): 377– 379
https://doi.org/10.1038/386377a0
15 R S Rajaura, S Srivastava, V Sharma. et al.. Role of interlayer spacing and functional group on the hydrogen storage properties of graphene oxide and reduced graphene oxide. International Journal of Hydrogen Energy, 2016, 41( 22): 9454– 9461
https://doi.org/10.1016/j.ijhydene.2016.04.115
16 S P Shet, S Shanmuga Priya, K Sudhakar. et al.. A review on current trends in potential use of metal-organic framework for hydrogen storage. International Journal of Hydrogen Energy, 2021, 46( 21): 11782– 11803
https://doi.org/10.1016/j.ijhydene.2021.01.020
17 Y Song, J H Dai. Mechanisms of dopants influence on hydrogen uptake in COF-108: a first principles study. International Journal of Hydrogen Energy, 2013, 38( 34): 14668– 14674
https://doi.org/10.1016/j.ijhydene.2013.09.025
18 P K Chauhan, R Parameshwaran, P Kannan. et al.. Hydrogen storage in porous polymer derived Silicon Oxycarbide ceramics: outcomes and perspectives. Ceramics International, 2021, 47( 2): 2591– 2599
https://doi.org/10.1016/j.ceramint.2020.09.105
19 G E Ioannatos, X E Verykios. H2 storage on single- and multi-walled carbon nanotubes. International Journal of Hydrogen Energy, 2010, 35( 2): 622– 628
https://doi.org/10.1016/j.ijhydene.2009.11.029
20 B Sakintuna, F Lamari-Darkrim, M Hirscher. Metal hydride materials for solid hydrogen storage: a review. International Journal of Hydrogen Energy, 2007, 32( 9): 1121– 1140
https://doi.org/10.1016/j.ijhydene.2006.11.022
21 N A A Rusman, M Dahari. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. International Journal of Hydrogen Energy, 2016, 41( 28): 12108– 12126
https://doi.org/10.1016/j.ijhydene.2016.05.244
22 N Hanada, T Ichikawa, H Fujii. Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling. Journal of Physical Chemistry B, 2005, 109( 15): 7188– 7194
https://doi.org/10.1021/jp044576c
23 G D Sandrock. A new family of hydrogen storage alloys based on the system nickel-mischmetal-calcium. In: Proceedings of the 12th Intersociety Energy Conversion Engineering Conference 1977, 770828
24 Z Zhu, S Zhu, H Lu. et al.. Stability of LaNi5-xCox alloys cycled in hydrogen—part 1 evolution in gaseous hydrogen storage performance. International Journal of Hydrogen Energy, 2019, 44( 29): 15159– 15172
https://doi.org/10.1016/j.ijhydene.2019.04.111
25 S Srivastava, K Panwar. Investigations on microstructures of ball-milled MmNi5 hydrogen storage alloy. Materials Research Bulletin, 2016, 73 : 284– 289
https://doi.org/10.1016/j.materresbull.2015.09.021
26 F Guo, K Namba, H Miyaoka. et al.. Hydrogen storage behavior of TiFe alloy activated by different methods. Materials Letters: X, 2021, 9 : 100061
https://doi.org/10.1016/j.mlblux.2021.100061
27 P Zhou, Z Cao, X Xiao. et al.. Development of Ti-Zr-Mn-Cr-V based alloys for high-density hydrogen storage. Journal of Alloys and Compounds, 2021, 875 : 160035
https://doi.org/10.1016/j.jallcom.2021.160035
28 J Graetz, J J Reilly. Decomposition kinetics of the AlH3 polymorphs. Journal of Physical Chemistry B, 2005, 109( 47): 22181– 22185
https://doi.org/10.1021/jp0546960
29 R K Ahluwalia, T Q Hua, J K Peng. Automotive storage of hydrogen in alane. International Journal of Hydrogen Energy, 2009, 34( 18): 7731– 7740
https://doi.org/10.1016/j.ijhydene.2009.07.013
30 S Sleiman, J Huot. Effect of particle size, pressure and temperature on the activation process of hydrogen absorption in TiVZrHfNb high entropy alloy. Journal of Alloys and Compounds, 2021, 861 : 158615
https://doi.org/10.1016/j.jallcom.2021.158615
31 Almeida Neto G R de, Beatrice C A Gonçalves, D R Leiva. et al.. Polyetherimide-LaNi5 composite films for hydrogen storage applications. International Journal of Hydrogen Energy, 2021, 46( 46): 23767– 23778
https://doi.org/10.1016/j.ijhydene.2021.04.191
32 W M Mueller. The rare-earth hydrides. In: Mueller W M, Blackledge J P, Libowitz G G. Metal Hydrides. New York: Academic Press, 1968, 384– 440
33 K Young. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Amsterdam: Elsevier, 2018
34 G D Sandrock, J J Murray, M L Post. et al.. Hydrides and deuterides of CaNi5. Materials Research Bulletin, 1982, 17( 7): 887– 894
https://doi.org/10.1016/0025-5408(82)90008-3
35 Y J Lee, J Y Lee, J K Park. A study on the hydride formation of TiFe and its alloys. Journal of the Korean Institute of Metals, 1982, 20( 11): 969– 974
36 Hydrogen The Cell Technologies Office Fuel. DOE target for hydrogen storage. Washington, DC, USA, 2022
37 A Keçebaş M Kayfeci. Hydrogen properties. In: Calise F, D’Accadia M D, Santarelli M, eds. Calise F, D’Accadia M D, Santarelli M, eds, 2019
38 H Idriss M Scott V Subramani. Introduction to hydrogen and its properties. In: Subramani V, Basile A, Veziroğlu T N, eds. Subramani V, Basile A, Veziroğlu T N, eds, 2015
39 Y Fukai. The Metal-Hydrogen System: Basic Bulk Properties. Berlin: Springer, 2005
40 A Züttel. Fuels–hydrogen storage|hydrides. In: Garche J, ed. Encyclopedia of Electrochemical Power Sources. Amsterdam: Elsevier, 2009, 440– 458
https://doi.org/10.1016/B978-044452745-5.00325-7
41 F Stein, A Leineweber. Laves phases: a review of their functional and structural applications and an improved fundamental understanding of stability and properties. Journal of Materials Science, 2021, 56( 9): 5321– 5427
https://doi.org/10.1007/s10853-020-05509-2
42 Berkeley National Laboratory Lawrence. Lattice structure. San Francisco, USA, 2022
43 E Acha, J M Requies, J F Cambra. Hydrogen purification methods: Iron-based redox processes, adsorption, and metal hydrides. In: Subramani V, Basile A, Veziroğlu T N. Compendium of Hydrogen Energy: Hydrogen Production and Purification. Cambridge: Woodhead Publishing, 2015, 395– 417
44 K Shashikala. Hydrogen storage materials. In: Banerjee S, Tyagi A K. Functional Materials. Amsterdam: Elsevier, 2012, 607– 637
45 Y Nakamura, K Sakaki, H Kim. et al.. Reaction paths via a new transient phase in non-equilibrium hydrogen absorption of LaNi2Co3. International Journal of Hydrogen Energy, 2020, 45( 41): 21655– 21665
https://doi.org/10.1016/j.ijhydene.2020.05.237
46 F Yang, J Wang, Y Zhang. et al.. Recent progress on the development of high entropy alloys (HEAs) for solid hydrogen storage: a review. International Journal of Hydrogen Energy, 2022, 47( 21): 11236– 11249
https://doi.org/10.1016/j.ijhydene.2022.01.141
47 N T Stentson, S McWhorter, C C Ahn. Introduction to hydrogen storage. In: Gupta R B, Basile A, Veziroğlu T N, eds. Compendium of Hydrogen Energy: Hydrogen Storage, Transportation and Infrastructure. Cambridge: Woodhead Publishing, 2016, 3– 25
48 N Saini, C Pandey, M M Mahapatra. Effect of diffusible hydrogen content on embrittlement of P92 steel. International Journal of Hydrogen Energy, 2017, 42( 27): 17328– 17338
https://doi.org/10.1016/j.ijhydene.2017.05.214
49 Y Liu, H Pan. Hydrogen storage materials. In: Suib S L. New and Future Developments in Catalysis: Batteries, Hydrogen Storage and Fuel Cells. Amsterdam: Elsevier, 2013, 377– 405
50 D Chandra. Intermetallics for hydrogen storage. In: Walker G. Solid-State Hydrogen Storage. Cambridge: Woodhead Publishing, 2008, 315– 356
51 A J Maeland. Hydrides for hydrogen storage. In: Peruzzini M, Poli R. Recent advances in hydride chemistry. Amsterdam: Elsevier, 2001, 531– 556
52 F Heubner, A Hilger, N Kardjilov. et al.. In-operando stress measurement and neutron imaging of metal hydride composites for solid-state hydrogen storage. Journal of Power Sources, 2018, 397 : 262– 270
https://doi.org/10.1016/j.jpowsour.2018.06.093
53 K Goto, S Ozaki, W Nakao. Effect of diffusion coefficient variation on interrelation between hydrogen diffusion and induced internal stress in hydrogen storage alloys. Journal of Alloys and Compounds, 2017, 691 : 705– 712
https://doi.org/10.1016/j.jallcom.2016.08.288
54 Y Zhang, X Wei, W Zhang. et al.. Effect of milling duration on hydrogen storage thermodynamics and kinetics of Mg-based alloy. International Journal of Hydrogen Energy, 2020, 45( 58): 33832– 33845
https://doi.org/10.1016/j.ijhydene.2020.09.144
55 H Yong, X Wei, K Zhang. et al.. Characterization of microstructure, hydrogen storage kinetics and thermodynamics of ball-milled Mg90Y1.5Ce1.5Ni7 alloy. International Journal of Hydrogen Energy, 2021, 46( 34): 17802– 17813
https://doi.org/10.1016/j.ijhydene.2021.02.184
56 D Rattan Paul, A Sharma, P Panchal. et al.. Effect of ball milling and iron mixing on structural and morphological properties of magnesium for hydrogen storage application. Materials Today: Proceedings, 2021, 42 : 1673– 1677
https://doi.org/10.1016/j.matpr.2020.08.035
57 J Lv, Q Wang, P Chen. et al.. Effect of ball-milling time and Pd addition on electrochemical hydrogen storage performance of Co2B alloy. Solid State Sciences, 2020, 103 : 106184
https://doi.org/10.1016/j.solidstatesciences.2020.106184
58 Z Chen, L Luo, Z Su. et al.. Effect of LaH3 additive on microstructures and hydrogen storage properties of V40Ti26Cr26Fe8 alloys prepared by hydride powder sintering method. International Journal of Hydrogen Energy, 2019, 44( 26): 13538– 13548
https://doi.org/10.1016/j.ijhydene.2019.03.038
59 A Zaluska L Zaluski J O Ström-Olsen. Lithium-beryllium hydrides: the lightest reversible metal hydrides. Journal of Alloys and Compounds, 2000, 307( 1–2): 157– 166
60 K M Fromm. Chemistry of alkaline earth metals: it is not all ionic and definitely not boring! Coordination Chemistry Reviews, 2020, 408: 213193
61 Y Zhang, K Shimoda, H Miyaoka. et al.. Thermal decomposition of alkaline-earth metal hydride and ammonia borane composites. International Journal of Hydrogen Energy, 2010, 35( 22): 12405– 12409
https://doi.org/10.1016/j.ijhydene.2010.08.018
62 L George, S K Saxena. Structural stability of metal hydrides, alanates and borohydrides of alkali and alkali- earth elements: a review. International Journal of Hydrogen Energy, 2010, 35( 11): 5454– 5470
https://doi.org/10.1016/j.ijhydene.2010.03.078
63 X Zhang, Y Liu, Z Ren. et al.. Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides. Energy & Environmental Science, 2021, 14( 4): 2302– 2313
https://doi.org/10.1039/D0EE03160G
64 W Oelerich, T Klassen, R Bormann. Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. Journal of Alloys and Compounds, 2001, 315( 1–2): 237– 242
https://doi.org/10.1016/S0925-8388(00)01284-6
65 G Liang, J Huot, S Boily. et al.. Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm=Ti, V, Mn, Fe and Ni) systems. Journal of Alloys and Compounds, 1999, 292( 1–2): 247– 252
https://doi.org/10.1016/S0925-8388(99)00442-9
66 J Huot, D B Ravnsbæk, J Zhang. et al.. Mechanochemical synthesis of hydrogen storage materials. Progress in Materials Science, 2013, 58( 1): 30– 75
https://doi.org/10.1016/j.pmatsci.2012.07.001
67 X Zhang, Z Shen, N Jian. et al.. A novel complex oxide TiVO3.5 as a highly active catalytic precursor for improving the hydrogen storage properties of MgH2. International Journal of Hydrogen Energy, 2018, 43( 52): 23327– 23335
https://doi.org/10.1016/j.ijhydene.2018.10.216
68 X Zhang, Z Leng, M Gao. et al.. Enhanced hydrogen storage properties of MgH2 catalyzed with carbon-supported nanocrystalline TiO2. Journal of Power Sources, 2018, 398 : 183– 192
https://doi.org/10.1016/j.jpowsour.2018.07.072
69 C Zhou, Z Z Fang, C Ren. et al.. Effect of Ti intermetallic catalysts on hydrogen storage properties of magnesium hydride. Journal of Physical Chemistry C, 2013, 117( 25): 12973– 12980
https://doi.org/10.1021/jp402770p
70 D W Boukhvalov, M I Katsnelson, A I Lichtenstein. Hydrogen on graphene: electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Physical Review B: Condensed Matter and Materials Physics, 2008, 77( 3): 035427
https://doi.org/10.1103/PhysRevB.77.035427
71 D Levesque, A Gicquel, F L Darkrim. et al.. Monte Carlo simulations of hydrogen storage in carbon nanotubes. Journal of Physics Condensed Matter, 2002, 14( 40): 9285– 9293
https://doi.org/10.1088/0953-8984/14/40/318
72 X Xie, C Hou, C Chen. et al.. First-principles studies in Mg-based hydrogen storage materials: a review. Energy, 2020, 211 : 118959
https://doi.org/10.1016/j.energy.2020.118959
73 S Bahou, H Labrim, M Lakhal. et al.. Magnesium vacancies and hydrogen doping in MgH2 for improving gravimetric capacity and desorption temperature. International Journal of Hydrogen Energy, 2021, 46( 2): 2322– 2329
https://doi.org/10.1016/j.ijhydene.2020.10.078
74 M Lakhal, M Bhihi, A Benyoussef. et al.. The hydrogen ab/desorption kinetic properties of doped magnesium hydride MgH2 systems by first principles calculations and kinetic Monte Carlo simulations. International Journal of Hydrogen Energy, 2015, 40( 18): 6137– 6144
https://doi.org/10.1016/j.ijhydene.2015.02.137
75 K Edalati, R Uehiro, Y Ikeda. et al.. Design and synthesis of a magnesium alloy for room temperature hydrogen storage. Acta Materialia, 2018, 149 : 88– 96
https://doi.org/10.1016/j.actamat.2018.02.033
76 J Zhang, Y Zhu, L Yao. et al.. State of the art multi-strategy improvement of Mg-based hydrides for hydrogen storage. Journal of Alloys and Compounds, 2019, 782 : 796– 823
https://doi.org/10.1016/j.jallcom.2018.12.217
77 V C Y Kong, D W Kirk, F R Foulkes. et al.. Development of hydrogen storage for fuel cell generators II: utilization of calcium hydride and lithium hydride. International Journal of Hydrogen Energy, 2003, 28( 2): 205– 214
https://doi.org/10.1016/S0360-3199(02)00039-3
78 Y Xiao, C Wu, H Wu. et al.. Hydrogen generation by CaH2-induced hydrolysis of Mg17Al12 hydride. International Journal of Hydrogen Energy, 2011, 36( 24): 15698– 15703
https://doi.org/10.1016/j.ijhydene.2011.09.022
79 Y Kojima, K I Suzuki, K Fukumoto. et al.. Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide. International Journal of Hydrogen Energy, 2002, 27( 10): 1029– 1034
https://doi.org/10.1016/S0360-3199(02)00014-9
80 G Liang, J Huot, R Schulz. Mechanical alloying and hydrogen storage properties of CaNi5-based alloys. Journal of Alloys and Compounds, 2001, 321( 1): 146– 150
https://doi.org/10.1016/S0925-8388(01)01010-6
81 S Chumphongphan, M Paskevicius, D A Sheppard. et al.. Cycle life and hydrogen storage properties of mechanical alloyed Ca1−xZrxNi5−yCry; (x = 0, 0.05 and y = 0, 0.1). International Journal of Hydrogen Energy, 2012, 37( 9): 7586– 7593
https://doi.org/10.1016/j.ijhydene.2012.01.131
82 G Liang, R Schulz. Phase structures and hydrogen storage properties of Ca-Mg-Ni alloys prepared by mechanical alloying. Journal of Alloys and Compound, 2003, 356–357 : 612– 616
https://doi.org/10.1016/S0925-8388(02)01285-9
83 T Z Si, Q A Zhang, G Pang. et al.. Structural characteristics and hydrogen storage properties of Ca3.0−xMgxNi9 (x = 0.5, 1.0, 1.5 and 2.0) alloys. International Journal of Hydrogen Energy, 2009, 34( 3): 1483– 1488
https://doi.org/10.1016/j.ijhydene.2008.11.051
84 X Shan, J H Payer, J S Wainright. Increased performance of hydrogen storage by Pd-treated LaNi4.7Al0.3, CaNi5 and Mg2Ni. Journal of Alloys and Compounds, 2006, 426( 1–2): 400– 407
https://doi.org/10.1016/j.jallcom.2006.02.025
85 X Shan, J H Payer, J S Wainright. Improved durability of hydrogen storage alloys. Journal of Alloys and Compounds, 2007, 430( 1–2): 262– 268
https://doi.org/10.1016/j.jallcom.2006.05.005
86 H T Takeshita, Y Sakamoto, N Takeichi. et al.. Synthesis of CaNi1−xPdx (0.1≤x≤1) alloys and hydrogenation properties of CaPd. Journal of Alloys and Compounds, 2002, 347( 1–2): 231– 238
https://doi.org/10.1016/S0925-8388(02)00761-2
87 L Ma, Y Sun, L Wang. et al.. Calcium decoration of boron nitride nanotubes with vacancy defects as potential hydrogen storage materials: a first-principles investigation. Materials Today. Communications, 2021, 26 : 101985
https://doi.org/10.1016/j.mtcomm.2020.101985
88 J Mao, P Guo, T Zhang. et al.. A first-principle study on hydrogen storage of metal atoms (M = Li, Ca, Sc, and Ti) coated B40 fullerene composites. Computational & Theoretical Chemistry, 2020, 1181 : 112823
https://doi.org/10.1016/j.comptc.2020.112823
89 M Yoon, S Yang, C Hicke. et al.. Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage. Physical Review Letters, 2008, 100( 20): 206806
https://doi.org/10.1103/PhysRevLett.100.206806
90 C Ataca, E Aktürk, S Ciraci. Hydrogen storage of calcium atoms adsorbed on graphene: first-principles plane wave calculations. Physical Review B: Condensed Matter and Materials Physics, 2009, 79( 4): 041406
https://doi.org/10.1103/PhysRevB.79.041406
91 H Lee, J Ihm, M L Cohen. et al.. Calcium-decorated graphene-based nanostructures for hydrogen storage. Nano Letters, 2010, 10( 3): 793– 798
https://doi.org/10.1021/nl902822s
92 Y Gao, N Zhao, J Li. et al.. Hydrogen spillover storage on Ca-decorated graphene. International Journal of Hydrogen Energy, 2012, 37( 16): 11835– 11841
https://doi.org/10.1016/j.ijhydene.2012.05.029
93 M Gambini, T Stilo, M Vellini. Selection of metal hydrides for a thermal energy storage device to support low-temperature concentrating solar power plants. International Journal of Hydrogen Energy, 2020, 45( 53): 28404– 28425
https://doi.org/10.1016/j.ijhydene.2020.07.211
94 D Mukherjee, T Höllerhage, V Leich. et al.. The nature of the heavy alkaline earth metal–hydrogen bond: synthesis, structure, and reactivity of a cationic strontium hydride cluster. Journal of the American Chemical Society, 2018, 140( 9): 3403– 3411
https://doi.org/10.1021/jacs.7b13796
95 N Hosseinabadi. The beryllium/strontium doped hydrogen storage alanate nano powders for concentrating solar thermal power applications. International Journal of Hydrogen Energy, 2021, 46( 7): 5025– 5044
https://doi.org/10.1016/j.ijhydene.2020.11.100
96 G Bruzzone, G Costa, M Ferretti. et al.. Hydrogen storage in a beryllium substituted TiFe compound. International Journal of Hydrogen Energy, 1980, 5( 3): 317– 322
https://doi.org/10.1016/0360-3199(80)90075-0
97 D Li, Y Ouyang, J Li. et al.. Hydrogen storage of beryllium adsorbed on graphene doping with boron: first-principles calculations. Solid State Communications, 2012, 152( 5): 422– 425
https://doi.org/10.1016/j.ssc.2011.11.042
98 R Rahimi, M Solimannejad. First-principles study of superior hydrogen storage performance of Li-decorated Be2N6 monolayer. International Journal of Hydrogen Energy, 2020, 45( 38): 19465– 19478
https://doi.org/10.1016/j.ijhydene.2020.05.047
99 Y J Wang, L Xu, L H Qiao. et al.. Ultra-high capacity hydrogen storage of B6Be2 and B8Be2 clusters. International Journal of Hydrogen Energy, 2020, 45( 23): 12932– 12939
https://doi.org/10.1016/j.ijhydene.2020.02.209
100 F L Castillo-Alvarado, J Ortiz-Lopez, J S Arellano. et al.. Hydrogen storage on beryllium-coated toroidal carbon nanostructure C120 modeled with density functional theory. Advances in Science and Technology (Owerri, Nigeria), 2010, 72 : 188– 195
https://doi.org/10.4028/www.scientific.net/AST.72.188
101 S Ghosh, V Padmanabhan. Beryllium-doped single-walled carbon nanotubes with Stone-Wales defects: a promising material to store hydrogen at room temperature. International Journal of Hydrogen Energy, 2017, 42( 38): 24237– 24246
https://doi.org/10.1016/j.ijhydene.2017.07.204
102 J Beheshtian, I Ravaei. Hydrogen storage by BeO nano-cage: a DFT study. Applied Surface Science, 2016, 368 : 76– 81
https://doi.org/10.1016/j.apsusc.2016.01.239
103 J Liu, K Li, H Cheng. et al.. New insights into the hydrogen storage performance degradation and Al functioning mechanism of LaNi5−xAlx alloys. International Journal of Hydrogen Energy, 2017, 42( 39): 24904– 24914
https://doi.org/10.1016/j.ijhydene.2017.07.213
104 B Molinas, A Pontarollo, M Scapin. et al.. The optimization of MmNi5−xAlx hydrogen storage alloy for sea or lagoon navigation and transportation. International Journal of Hydrogen Energy, 2016, 41( 32): 14484– 14490
https://doi.org/10.1016/j.ijhydene.2016.05.222
105 S S Mohammadshahi, T Gould, E M Gray. et al.. An improved model for metal-hydrogen storage tanks–Part 1: model development. International Journal of Hydrogen Energy, 2016, 41( 5): 3537– 3550
https://doi.org/10.1016/j.ijhydene.2015.12.050
106 B J Hardy, D L Anton. Hierarchical methodology for modeling hydrogen storage systems. Part II: detailed models. International Journal of Hydrogen Energy, 2009, 34( 7): 2992– 3004
https://doi.org/10.1016/j.ijhydene.2008.12.056
107 B J Hardy, D L Anton. Hierarchical methodology for modeling hydrogen storage systems. Part II: detailed models. International Journal of Hydrogen Energy, 2009, 34( 7): 2992– 3004
https://doi.org/10.1016/j.ijhydene.2008.12.056
108 S Chandra, P Sharma, P Muthukumar. et al.. Modeling and numerical simulation of a 5 kg LaNi5-based hydrogen storage reactor with internal conical fins. International Journal of Hydrogen Energy, 2020, 45( 15): 8794– 8809
https://doi.org/10.1016/j.ijhydene.2020.01.115
109 T Oi, K Maki, Y Sakaki. Heat transfer characteristics of the metal hydride vessel based on the plate-fin type heat exchanger. Journal of Power Sources, 2004, 125( 1): 52– 61
https://doi.org/10.1016/S0378-7753(03)00822-X
110 M Afzal, R Mane, P Sharma. Heat transfer techniques in metal hydride hydrogen storage: a review. International Journal of Hydrogen Energy, 2017, 42( 52): 30661– 30682
https://doi.org/10.1016/j.ijhydene.2017.10.166
111 Sánchez A Rodríguez, H P Klein, M Groll. Expanded graphite as heat transfer matrix in metal hydride beds. International Journal of Hydrogen Energy, 2003, 28( 5): 515– 527
https://doi.org/10.1016/S0360-3199(02)00057-5
112 S Ferekh, G Gwak, S Kyoung. et al.. Numerical comparison of heat-fin- and metal-foam-based hydrogen storage beds during hydrogen charging process. International Journal of Hydrogen Energy, 2015, 40( 42): 14540– 14550
https://doi.org/10.1016/j.ijhydene.2015.07.149
113 A H Eisapour, A Naghizadeh, M Eisapour. et al.. Optimal design of a metal hydride hydrogen storage bed using a helical coil heat exchanger along with a central return tube during the absorption process. International Journal of Hydrogen Energy, 2021, 46( 27): 14478– 14493
https://doi.org/10.1016/j.ijhydene.2021.01.170
114 R U Urunkar, S D Patil. Enhancement of heat and mass transfer characteristics of metal hydride reactor for hydrogen storage using various nanofluids. International Journal of Hydrogen Energy, 2021, 46( 37): 19486– 19497
https://doi.org/10.1016/j.ijhydene.2021.03.090
115 M Afzal, P Sharma. Design and computational analysis of a metal hydride hydrogen storage system with hexagonal honeycomb based heat transfer enhancements—part A. International Journal of Hydrogen Energy, 2021, 46( 24): 13116– 13130
https://doi.org/10.1016/j.ijhydene.2021.01.135
116 M Melnichuk, N Silin, H A Peretti. Optimized heat transfer fin design for a metal-hydride hydrogen storage container. International Journal of Hydrogen Energy, 2009, 34( 8): 3417– 3424
https://doi.org/10.1016/j.ijhydene.2009.02.040
117 F Laurencelle, J Goyette. Simulation of heat transfer in a metal hydride reactor with aluminium foam. International Journal of Hydrogen Energy, 2007, 32( 14): 2957– 2964
https://doi.org/10.1016/j.ijhydene.2006.12.007
118 C Pohlmann, L Röntzsch, T Weißgärber. et al.. Heat and gas transport properties in pelletized hydride-graphite-composites for hydrogen storage applications. International Journal of Hydrogen Energy, 2013, 38( 3): 1685– 1691
https://doi.org/10.1016/j.ijhydene.2012.09.159
119 H Q Nguyen, B Shabani. Review of metal hydride hydrogen storage thermal management for use in the fuel cell systems. International Journal of Hydrogen Energy, 2021, 46( 62): 31699– 31726
https://doi.org/10.1016/j.ijhydene.2021.07.057
120 F Li, J Zhao, D Tian. et al.. Hydrogen storage behavior in C15 Laves phase compound TiCr2 by first principles. Journal of Applied Physics, 2009, 105( 4): 043707
https://doi.org/10.1063/1.3081636
121 H Qu, J Du, C Pu. et al.. Effects of Co introduction on hydrogen storage properties of Ti-Fe-Mn alloys. International Journal of Hydrogen Energy, 2015, 40( 6): 2729– 2735
https://doi.org/10.1016/j.ijhydene.2014.12.089
122 Y Zhang, X Wei, J Gao. et al.. Electrochemical hydrogen storage behaviors of as-milled Mg-Ti-Ni-Co-Al-based alloys applied to Ni-MH battery. Electrochimica Acta, 2020, 342 : 136123
https://doi.org/10.1016/j.electacta.2020.136123
123 W Zheng, W Song, T Wu. et al.. Experimental investigation and thermodynamic modeling of the ternary Ti-Fe-Mn system for hydrogen storage applications. Journal of Alloys and Compounds, 2022, 891 : 161957
https://doi.org/10.1016/j.jallcom.2021.161957
124 S Liu, G Qiu, X Liu. et al.. Structures and properties of TiMn2–5x(V4Fe)x(x = 0.30, 0.35) hydrogen storage alloys. Rare Metal Materials and Engineering, 2010, 39( 2): 214– 218
https://doi.org/10.1016/S1875-5372(10)60082-3
125 E M Dematteis, D M Dreistadt, G Capurso. et al.. Fundamental hydrogen storage properties of TiFe-alloy with partial substitution of Fe by Ti and Mn. Journal of Alloys and Compounds, 2021, 874 : 159925
https://doi.org/10.1016/j.jallcom.2021.159925
126 T Yang, P Wang, C Xia. et al.. Effect of chromium, manganese and yttrium on microstructure and hydrogen storage properties of TiFe-based alloy. International Journal of Hydrogen Energy, 2020, 45( 21): 12071– 12081
https://doi.org/10.1016/j.ijhydene.2020.02.086
127 S Nayebossadri, D Book. Development of a high-pressure Ti-Mn based hydrogen storage alloy for hydrogen compression. Renewable Energy, 2019, 143 : 1010– 1021
https://doi.org/10.1016/j.renene.2019.05.052
128 R Y Sathe, H Bae, H Lee. et al.. Hydrogen storage capacity of low-lying isomer of C24 functionalized with Ti. International Journal of Hydrogen Energy, 2020, 45( 16): 9936– 9945
https://doi.org/10.1016/j.ijhydene.2020.02.016
129 B Feng, J Zhang, Q Zhong. et al.. Experimental realization of two-dimensional boron sheets. Nature Chemistry, 2016, 8( 6): 563– 568
https://doi.org/10.1038/nchem.2491
130 B Peng, H Zhang, H Shao. et al.. Stability and strength of atomically thin borophene from first principles calculations. Materials Research Letters, 2017, 5( 6): 399– 407
https://doi.org/10.1080/21663831.2017.1298539
131 T Z Wen, A Z Xie, J L Li. et al.. Novel Ti-decorated borophene χ3 as potential high-performance for hydrogen storage medium. International Journal of Hydrogen Energy, 2020, 45( 53): 29059– 29069
https://doi.org/10.1016/j.ijhydene.2020.07.278
132 A Lebon, J Carrete, L J Gallego. et al.. Ti-decorated zigzag graphene nanoribbons for hydrogen storage. A van der Waals-corrected density-functional study. International Journal of Hydrogen Energy, 2015, 40( 14): 4960– 4968
https://doi.org/10.1016/j.ijhydene.2014.12.134
133 K N Grew, Z B Brownlee, K C Shukla. et al.. Assessment of alane as a hydrogen storage media for portable fuel cell power sources. Journal of Power Sources, 2012, 217 : 417– 430
https://doi.org/10.1016/j.jpowsour.2012.06.007
134 L Wang, A Rawal, K F Aguey-Zinsou. Hydrogen storage properties of nanoconfined aluminium hydride (AlH3). Chemical Engineering Science, 2019, 194 : 64– 70
https://doi.org/10.1016/j.ces.2018.02.014
135 L Liang, C Wang, M Ren. et al.. Unraveling the synergistic catalytic effects of TiO2 and Pr6O11 on superior dehydrogenation performances of α-AlH3. ACS Applied Materials & Interfaces, 2021, 13( 23): 26998– 27005
https://doi.org/10.1021/acsami.1c04534
136 E Ianni, M V Sofianos, M R Rowles. et al.. Synthesis of NaAlH4/Al composites and their applications in hydrogen storage. International Journal of Hydrogen Energy, 2018, 43( 36): 17309– 17317
https://doi.org/10.1016/j.ijhydene.2018.07.072
137 R Urbanczyk, K Peinecke, M Felderhoff. et al.. Aluminium alloy based hydrogen storage tank operated with sodium aluminium hexahydride Na3AlH6. International Journal of Hydrogen Energy, 2014, 39( 30): 17118– 17128
https://doi.org/10.1016/j.ijhydene.2014.08.101
138 Y Huang, H Shao, Q Zhang. et al.. Layer-by-layer uniformly confined Graphene-NaAlH4 composites and hydrogen storage performance. International Journal of Hydrogen Energy, 2020, 45( 52): 28116– 28122
https://doi.org/10.1016/j.ijhydene.2020.03.241
139 J Montero, G Ek, M Sahlberg. et al.. Improving the hydrogen cycling properties by Mg addition in Ti-V-Zr-Nb refractory high entropy alloy. Scripta Materialia, 2021, 194 : 113699
https://doi.org/10.1016/j.scriptamat.2020.113699
140 P Edalati, R Floriano, A Mohammadi. et al.. Reversible room temperature hydrogen storage in high-entropy alloy TiZrCrMnFeNi. Scripta Materialia, 2020, 178 : 387– 390
https://doi.org/10.1016/j.scriptamat.2019.12.009
141 B Tu, H Wang, Y Wang. et al.. Optimizing Ti-Zr-Cr-Mn-Ni-V alloys for hybrid hydrogen storage tank of fuel cell bicycle. International Journal of Hydrogen Energy, 2022, 47( 33): 14952– 14960
https://doi.org/10.1016/j.ijhydene.2022.03.018
142 I Kunce, M Polanski, J Bystrzycki. Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using Laser Engineered Net Shaping (LENS). International Journal of Hydrogen Energy, 2014, 39( 18): 9904– 9910
https://doi.org/10.1016/j.ijhydene.2014.02.067
143 P Liu, X Xie, L Xu. et al.. Hydrogen storage properties of (Ti0.85Zr0.15)1.05Mn1.2Cr0.6V0.1M0.1 (M = Ni, Fe, Cu) alloys easily activated at room temperature. Progress in Natural Science, 2017, 27( 6): 652– 657
https://doi.org/10.1016/j.pnsc.2017.09.007
144 J Hu, H Shen, M Jiang. et al.. A DFT study of hydrogen storage in high-entropy alloy TiZrHfScMo. Nanomaterials (Basel, Switzerland), 2019, 9( 3): 461
https://doi.org/10.3390/nano9030461
145 H Shen, J Zhang, J Hu. et al.. A novel TiZrHfMoNb high-entropy alloy for solar thermal energy storage. Nanomaterials (Basel, Switzerland), 2019, 9( 2): 248
https://doi.org/10.3390/nano9020248
146 K Higuchi, K Yamamoto, H Kajioka. et al.. Remarkable hydrogen storage properties in three-layered Pd/Mg/Pd thin films. Journal of Alloys and Compounds, 2002, 330–332 : 526– 530
https://doi.org/10.1016/S0925-8388(01)01542-0
147 G L N Reddy, S Kumar. Reversible hydrogen storage in vapour deposited Mg-5 at.% Pd powder composites. International Journal of Hydrogen Energy, 2014, 39( 9): 4421– 4426
https://doi.org/10.1016/j.ijhydene.2014.01.007
148 B Han, S Yu, H Wang. et al.. Nanosize effect on the hydrogen storage properties of Mg-based amorphous alloy. Scripta Materialia, 2022, 216 : 114736
https://doi.org/10.1016/j.scriptamat.2022.114736
149 S Liu, J Liu, X Liu. et al.. Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature. Nature Nanotechnology, 2021, 16( 3): 331– 336
https://doi.org/10.1038/s41565-020-00818-8
[1] Chen ZHANG, Guoliang AN, Liwei WANG, Shaofei WU. Multi-stage ammonia production for sorption selective catalytic reduction of NOx[J]. Front. Energy, 2022, 16(5): 840-851.
[2] Xiumin JIANG, Xiangyong HUANG, Jiaxun LIU, Chaoqun ZHANG. Effect of particle size on coal char----NO reaction[J]. Front Energ, 2011, 5(2): 221-228.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed