Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2022, Vol. 16 Issue (4) : 537-541    https://doi.org/10.1007/s11708-022-0837-5
VIEWPOINT
Promising approach for preparing metallic single-atom catalysts: electrochemical deposition
Shuiyun SHEN, Lutian ZHAO, Junliang ZHANG()
Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(1611 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Junliang ZHANG   
Online First Date: 22 September 2022    Issue Date: 21 October 2022
 Cite this article:   
Shuiyun SHEN,Lutian ZHAO,Junliang ZHANG. Promising approach for preparing metallic single-atom catalysts: electrochemical deposition[J]. Front. Energy, 2022, 16(4): 537-541.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-022-0837-5
https://academic.hep.com.cn/fie/EN/Y2022/V16/I4/537
Fig.1  Development of metallic electrocatalysts (adapted with permission from Refs. [11, 15, 16].
Fig.2  Comparison of traditional preparation methods and electrochemical methods for SACs (adapted with permission from Refs. [34, 38, 40, 42?44]).
Samples Methods Atomic mass loading (mass fraction, %) Ref.
Pt1-N/BP Pyrolysis 0.4 [31]
Pt/FeOx Thermal reduction 0.08 [45]
Pt-SA/TiO2 Thermal reduction 2.02 [46]
Ir/Co(OH)2 Electrochemical deposition > 2.0 [34]
Fe/GD Electrochemical deposition 0.68 [36]
Ni/GD Electrochemical deposition 0.278 [36]
Ir1/TO-CoOOH Electrochemical deposition 1.2 [35]
Ir1/VO-CoOOH Electrochemical deposition 1.3 [35]
Tab.1  Comparisons of metal loading of SACs prepared by traditional and electrodeposition methods
1 M K Debe. Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 2012, 486( 7401): 43– 51
https://doi.org/10.1038/nature11115
2 D F Gao, T F Liu, G X Wang. et al.. Structure sensitivity in single-atom catalysis toward CO2 electroreduction. ACS Energy Letters, 2021, 6( 2): 713– 727
https://doi.org/10.1021/acsenergylett.0c02665
3 L G Li, P T Wang, Q Shao. et al.. Recent progress in advanced electrocatalyst design for acidic oxygen evolution reaction. Advanced Materials, 2021, 33( 50): 2004243
https://doi.org/10.1002/adma.202004243
4 L C Liu, A Corma. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chemical Reviews, 2018, 118( 10): 4981– 5079
https://doi.org/10.1021/acs.chemrev.7b00776
5 B C Han, C R Miranda, G Ceder. Effect of particle size and surface structure on adsorption of O and OH on platinum nanoparticles: a first-principles study. Physical Review B: Condensed Matter and Materials Physics, 2008, 77( 7): 075410
https://doi.org/10.1103/PhysRevB.77.075410
6 Y F Zhang, J Qin, D Y Leng. et al.. Tunable strain drives the activity enhancement for oxygen reduction reaction on Pd@Pt core-shell electrocatalysts. Journal of Power Sources, 2021, 485 : 229340
https://doi.org/10.1016/j.jpowsour.2020.229340
7 J L Zhang, M B Vukmirovic, Y Xu. et al.. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angewandte Chemie, 2005, 117( 14): 2170– 2173
https://doi.org/10.1002/ange.200462335
8 R R Adzic N S Marinkovic. Platinum monolayer electrocatalysts. In: Kreysa G, Ota Ki, Savinell R F, eds. Encyclopedia of Applied Electrochemistry. New York: Springer, 2014
9 L DeRita, S Dai, K Lopez-Zepeda. et al.. Catalyst architecture for stable single atom dispersion enables site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt atoms, oxidized Pt clusters, and metallic Pt clusters on TiO2. Journal of the American Chemical Society, 2017, 139( 40): 14150– 14165
https://doi.org/10.1021/jacs.7b07093
10 D Wang, H L Xin, R Hovden. et al.. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nature Materials, 2013, 12( 1): 81– 87
https://doi.org/10.1038/nmat3458
11 K Sasaki, K A Kuttiyiel, R R Adzic. Designing high performance Pt monolayer core-shell electrocatalysts for fuel cells. Current Opinion in Electrochemistry, 2020, 21 : 368– 375
https://doi.org/10.1016/j.coelec.2020.03.020
12 L X Luo, F J Zhu, R X Tian. et al.. Composition-graded PdxNi1–x nanospheres with Pt monolayer shells as high-performance electrocatalysts for oxygen reduction reaction. ACS Catalysis, 2017, 7( 8): 5420– 5430
https://doi.org/10.1021/acscatal.7b01775
13 H Su, M A Soldatov, V Roldugin. et al.. Platinum single-atom catalyst with self-adjustable valence state for large-current-density acidic water oxidation. eScience, 2022, 2( 1): 102– 109
https://doi.org/10.1016/j.esci.2021.12.007
14 W Zhang, W T Zheng. Single atom excels as the smallest functional material. Advanced Functional Materials, 2016, 26( 18): 2988– 2993
https://doi.org/10.1002/adfm.201600240
15 R X Tian, S Y Shen, F J Zhu. et al.. Icosahedral Pt-Ni nanocrystalline electrocatalyst: growth mechanism and oxygen reduction activity. ChemSusChem, 2018, 11( 6): 1015– 1019
https://doi.org/10.1002/cssc.201800074
16 P Q Yin, T Yao, Y E Wu. et al.. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angewandte Chemie International Edition, 2016, 55( 36): 10800– 10805
https://doi.org/10.1002/anie.201604802
17 Y J Chen, S F Ji, C Chen. et al.. Single-atom catalysts: synthetic strategies and electrochemical applications. Joule, 2018, 2( 7): 1242– 1264
https://doi.org/10.1016/j.joule.2018.06.019
18 X J Cui, W Li, P Ryabchuk. et al.. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nature Catalysis, 2018, 1( 6): 385– 397
https://doi.org/10.1038/s41929-018-0090-9
19 W J Zang, T Sun, T Yang. et al.. Efficient hydrogen evolution of oxidized Ni-N3 defective sites for alkaline freshwater and seawater electrolysis. Advanced Materials, 2021, 33( 8): 2003846
https://doi.org/10.1002/adma.202003846
20 M Chen, Y He, J S Spendelow. et al.. Atomically dispersed metal catalysts for oxygen reduction. ACS Energy Letters, 2019, 4( 7): 1619– 1633
https://doi.org/10.1021/acsenergylett.9b00804
21 J Liu, M G Jiao, L L Lu. et al.. High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nature Communications, 2017, 8( 1): 15938
https://doi.org/10.1038/ncomms15938
22 S Yang, Y J Tak, J Kim. et al.. Support effects in single-atom platinum catalysts for electrochemical oxygen reduction. ACS Catalysis, 2017, 7( 2): 1301– 1307
https://doi.org/10.1021/acscatal.6b02899
23 A R Poerwoprajitno, L Gloag, J Watt. et al.. A single-Pt-atom-on-Ru-nanoparticle electrocatalyst for CO-resilient methanol oxidation. Nature Catalysis, 2022, 5( 3): 231– 237
https://doi.org/10.1038/s41929-022-00756-9
24 X N Wang, L M Zhao, X J Li. et al.. Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation. Nature Communications, 2022, 13( 1): 1596
https://doi.org/10.1038/s41467-022-29276-7
25 Y N Xia, Y J Xiong, B Lim. et al.. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?. Angewandte Chemie International Edition, 2009, 48( 1): 60– 103
https://doi.org/10.1002/anie.200802248
26 W Tan, S H Xie, Y D Cai. et al.. Transformation of highly stable Pt single sites on defect engineered ceria into robust Pt clusters for vehicle emission control. Environmental Science & Technology, 2021, 55( 18): 12607– 12618
https://doi.org/10.1021/acs.est.1c02853
27 M Zhou, S J Bao, A J Bard. Probing size and substrate effects on the hydrogen evolution reaction by single isolated Pt atoms, atomic clusters, and nanoparticles. Journal of the American Chemical Society, 2019, 141( 18): 7327– 7332
https://doi.org/10.1021/jacs.8b13366
28 Z M Peng, H Yang. Designer platinum nanoparticles: control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today, 2009, 4( 2): 143– 164
https://doi.org/10.1016/j.nantod.2008.10.010
29 H E M Hussein, R J Maurer, H Amari. et al.. Tracking metal electrodeposition dynamics from nucleation and growth of a single atom to a crystalline nanoparticle. ACS Nano, 2018, 12( 7): 7388– 7396
https://doi.org/10.1021/acsnano.8b04089
30 A Gupta, C Srivastava. Nucleation and growth mechanism of tin electrodeposition on graphene oxide: a kinetic, thermodynamic and microscopic study. Journal of Electroanalytical Chemistry (Lausanne, Switzerland), 2020, 861 : 113964
https://doi.org/10.1016/j.jelechem.2020.113964
31 P Altimari, F Pagnanelli. Electrochemical nucleation and three-dimensional growth of metal nanoparticles under mixed kinetic-diffusion control: model development and validation. Electrochimica Acta, 2016, 206 : 116– 126
https://doi.org/10.1016/j.electacta.2016.04.094
32 Z H Yan, H M Sun, X Chen. et al.. Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution. Nature Communications, 2018, 9( 1): 2373
https://doi.org/10.1038/s41467-018-04788-3
33 L H Zhang, L L Han, H X Liu. et al.. Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angewandte Chemie International Edition, 2017, 56( 44): 13900
https://doi.org/10.1002/anie.201709950
34 Z R Zhang, C Feng, C X Liu. et al.. Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nature Communications, 2020, 11( 1): 1215
https://doi.org/10.1038/s41467-020-14917-6
35 Z R Zhang, C Feng, D D Wang. et al.. Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution. Nature Communications, 2022, 13( 1): 2473
https://doi.org/10.1038/s41467-022-30148-3
36 Y R Xue, B L Huang, Y P Yi. et al.. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nature Communications, 2018, 9( 1): 1460
https://doi.org/10.1038/s41467-018-03896-4
37 H D Yu, Y R Xue, B L Huang. et al.. Ultrathin nanosheet of graphdiyne-supported palladium atom catalyst for efficient hydrogen production. iScience, 2019, 11 : 31– 41
https://doi.org/10.1016/j.isci.2018.12.006
38 Y Shi, C Lee, X Y Tan. et al.. Atomic-level metal electrodeposition: synthetic strategies, applications, and catalytic mechanism in electrochemical energy conversion. Small Structures, 2022, 3( 3): 2100185
https://doi.org/10.1002/sstr.202100185
39 M Kottwitz, Y Y Li, H D Wang. et al.. Single atom catalysts: a review of characterization methods. Chemistry Methods, 2021, 1( 6): 278– 294
https://doi.org/10.1002/cmtd.202100020
40 H L Fei, J C Dong, Y X Feng. et al.. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nature Catalysis, 2018, 1( 1): 63– 72
https://doi.org/10.1038/s41929-017-0008-y
41 G Di Liberto, L A Cipriano, G Pacchioni. Universal principles for the rational design of single atom electrocatalysts? handle with care.. ACS Catalysis, 2022, 12( 10): 5846– 5856
https://doi.org/10.1021/acscatal.2c01011
42 J C Liu, H Xiao, J Li. Constructing high-loading single-atom/cluster catalysts via an electrochemical potential window strategy. Journal of the American Chemical Society, 2020, 142( 7): 3375– 3383
https://doi.org/10.1021/jacs.9b06808
43 J W Wan, W X Chen, C Y Jia. et al.. Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties. Advanced Materials, 2018, 30( 11): 1705369
https://doi.org/10.1002/adma.201705369
44 X Wang, W X Chen, L Zhang. et al.. Uncoordinated amine groups of metal-organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. Journal of the American Chemical Society, 2017, 139( 28): 9419– 9422
https://doi.org/10.1021/jacs.7b01686
45 H S Wei, X Y Liu, A Q Wang. et al.. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nature Communications, 2014, 5( 1): 5634
https://doi.org/10.1038/ncomms6634
46 B W Zhang, L Ren, Z F Xu. et al.. Atomic structural evolution of single-layer Pt clusters as efficient electrocatalysts. Small, 2021, 17( 26): 2100732
https://doi.org/10.1002/smll.202100732
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed