Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2022, Vol. 16 Issue (5) : 734-746    https://doi.org/10.1007/s11708-022-0840-x
REVIEW ARTICLE
Novel strategies to tailor the photocatalytic activity of metal–organic frameworks for hydrogen generation: a mini-review
Luis A. ALFONSO-HERRERA1, Leticia M. TORRES-MARTINEZ2, J. Manuel MORA-HERNANDEZ3()
1. Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León 66455, México
2. Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León 66455, México; Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Miguel de Cervantes No. 120. Complejo Ind. Chihuahua, Chihuahua, Chih 31136, México
3. CONACYT-Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León 66455, México
 Download: PDF(1766 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This review provides a recompilation of the most important and recent strategies employed to increase the efficiency of metal–organic framework (MOF)-based systems toward the photocatalytic hydrogen evolution (PHE) reaction through specific strategies: tailoring the photocatalytic activity of bare MOFs and guest@MOF composites, formation of heterojunctions based on MOFs and various photocatalysts, and inorganic photocatalysts derived from MOFs. According to the data reported in this mini-review, the most effective strategy to improve the PHE of MOFs relies on modifying the linkers with new secondary building units (SBUs). Although several reviews have investigated the photocatalytic activity of MOFs from a general point of view, many of these studies relate this activity to the physicochemical and catalytic properties of MOFs. However, they did not consider the interactions between the components of the photocatalytic material. This study highlights the effects of strength of the supramolecular interactions on the photocatalytic performance of bare and MOF-based materials during PHE. A thorough review and comparison of the results established that metal–nanoparticle@MOF composites have weak van der Waals forces between components, whereas heterostructures only interact with MOFs at the surface of bare materials. Regarding material derivatives from MOFs, we found that pyrolysis destroyed some beneficial properties of MOFs for PHE. Thus, we conclude that adding SBUs to organic linkers is the most efficient strategy to perform the PHE because the SBUs added to the MOFs promote synergy between the two materials through strong coordination bonds.

Keywords metal–organic frameworks (MOFs)      photocatalytic hydrogen evolution      MOF heterojunctions      materials derived from MOFs      bandgap      recombination     
Corresponding Author(s): J. Manuel MORA-HERNANDEZ   
Online First Date: 25 October 2022    Issue Date: 28 November 2022
 Cite this article:   
Luis A. ALFONSO-HERRERA,Leticia M. TORRES-MARTINEZ,J. Manuel MORA-HERNANDEZ. Novel strategies to tailor the photocatalytic activity of metal–organic frameworks for hydrogen generation: a mini-review[J]. Front. Energy, 2022, 16(5): 734-746.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-022-0840-x
https://academic.hep.com.cn/fie/EN/Y2022/V16/I5/734
Fig.1  Self-assembly of schematic linkers and metal ions to form MOFs.
Strategy to enhance PHEStrategyMaterialHydrogen evolution rate/(μmol·(g·h)–1)Light sourceRef.
Tailoring the photocatalytic activity of bare MOFsCrystallinity effectM-008A53UV light254 nm[25]
M-008B103
Sensitization with Ce4+ ionsUiO-67-Ce269.6Xe lamp(λ > 400 nm)[26]
Pt single-atom encapsulationMBT50300 W Xe lamp(λ > 420 nm)[27]
Pt-SACs/MBT68330
Pt-NCs/MBT44230
Pt-NPs/MOF16410
Sensitization with Pt4+ ionsPCN-9(Co)4.8UV–visible light irradiation[28]
PCN-9(Co)-Pt33.5
Self-sensitizationPt@Pd-PCN-222(Hf)22674Visible light (λ ≥ 420 nm)[29]
Sensitization with dyesBDC-Zn47.5Solar irradiation[30]
BDC-Zn (MO)1137.8
BDC-Zn (MB)1259.4
Sensitization with BODIPY linkersPt/CCNU-14680Xenon arc lamp(λ > 420 nm)[31]
Sensitization with additional SBUsFeBrF4@Zr6-Cu120000Visible light(λ = 350–700 nm)[32]
mPTCu/Co11000Xe lamp 350–700 nm[27]
Ti3-BPDC-Ir925Visible light (λ > 400 nm)[33]
Ti3-BPDC-Ru61
Effect of hole position in linkersNH2-MIL-125-Ti1.5UV light (λ = 240–400 nm)[34]
MIL-125-Ti57.7
Formation of heterojunctions based on MOFs and various photocatalystsCoupled with g-C3N4g-C3N4 /UMOFNs1909500 W Xe lamp (λ = 250–1800 nm)[35]
NH2-MIL-125/g-C3N45316300 W Xe (λ > 400 nm)[36]
Morphology effect of materialCZS/NMF-41713.25 W LED[37]
Exposed crystallographic plane effectTiO2@MOF FS44Sum of light illumination (300 W Xelamp)[38]
Co-catalyst encapsulated in MOFs poresZIF-8/MoS268.4Solar light simulator[39]
Heterostructures associated by covalent bondsMOF-808@TpPa-1-COF (6/4)11880Summed light illumination (300 W Xelamp)[40]
Inorganic photocatalyst derived from MOFsCarbonaceous materials synthesized from MOFsCd(OH)2/CdS 40-gCN-NPC148.13Solar light(150 W Xelamp)[41]
Ni2P/Ni@C/g-C3N4-5508040300 W Xe lamp (λ ≥ 420 nm)[42]
Free noble metal heterostructuresNiS(0.3%)/CdS(30%)/TiO22149.15300 W Xe lamp (λ ≥ 420 nm)[43]
Inorganic heterostructures from MOF core-shell structuresCdS/MoS25587300 W Xe lampUV–visible light irradiation[44]
Cu3P@CoP9399Simulated solar light5 W LED white-lightmulti-channel[45]
Ru single-atom encapsulation into carbonaceous materialsRu-NPs/SAs@N-TC5000300 W Xe lamp (λ = 320–780 nm)[46]
Cu adsorption in the MOF derivative surfaceCu/C-ZnO5363.3300 W Xe lamp. UV cut-off filter (λ < 420 nm)[47]
Tab.1  Summary of the characteristics, conditions, and photocatalytic hydrogen evolution (PHE) rate for metal–organic framework (MOF) materials described in this review
Fig.2  Proposed catalytic cycle for mPTCu/Co-catalyzed for the PHE (adapted with permission from Ref. [49]).
Fig.3  (a) Proposed catalytic cycle for the visible light-driven PHE catalyzed by Ti3-BPDC-Ir; (b) detailed catalytic mechanism of the reaction on the Ti site via the TiIV/TiIII cycle (adapted with permission from Ref. [33]).
Fig.4  Schematic protection of the most active {100} crystallographic plane and core-shell structure formation.
Fig.5  Formation of Ni2P/Ni@C/g-C3N4 composites.
MOFMetal–organic framework
PHEPhotocatalytic hydrogen evolution
COFCovalent organic framework
bpdcBiphenyl-4,4-dicarboxylic acid
bpydc2,2-bipyridine-5,5-dicarboxylic acid
XPSX-ray photoelectron spectroscopy
EDTAEthylenediaminetetraacetic acid
SBUSecondary building unit
BIH3-dimethyl-2-phenyl-2,3-dihydro-1Hbenzo[d]-imidazole
bpy2,2′-bipyridine
ppy2-phenylpyridine
dcbpy2,2′-bipyridine-5,5′-dicarboxylate
g-C3N4Carbon nitride
ZIFZeolitic imidazolate framework
MCFMesoporous carbon flakes
EYEosin-Y
N-TCN-doped TiO2/C support
MOMethyl orange
TiATATi-MOF
Cu-PSPhotosensitizing linkers
UMOFN2d Co-Ni-based MOF
  
1 L Schlapbach, A Züttel. Hydrogen-storage materials for mobile applications. Nature, 2001, 414(6861): 353–358
https://doi.org/10.1038/35104634
2 P Nikolaidis, A Poullikkas. A comparative overview of hydrogen production processes. Renewable & Sustainable Energy Reviews, 2017, 67: 597–611
https://doi.org/10.1016/j.rser.2016.09.044
3 J Zhu, L Hu, P Zhao. et al.. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chemical Reviews, 2020, 120(2): 851–918
https://doi.org/10.1021/acs.chemrev.9b00248
4 D Kandi, S Martha, K M Parida. Quantum dots as enhancer in photocatalytic hydrogen evolution: a review. International Journal of Hydrogen Energy, 2017, 42(15): 9467–9481
https://doi.org/10.1016/j.ijhydene.2017.02.166
5 J Yu, X Yu. Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres. Environmental Science & Technology, 2008, 42(13): 4902–4907
https://doi.org/10.1021/es800036n
6 K Dhanalakshmi. Dye sensitized hydrogen evolution from water. International Journal of Hydrogen Energy, 2001, 26(7): 669–674
https://doi.org/10.1016/S0360-3199(00)00134-8
7 M R Al-Mamun, S Kader, M S Islam. et al.. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: a review. Journal of Environmental Chemical Engineering, 2019, 7(5): 103248
https://doi.org/10.1016/j.jece.2019.103248
8 C B Ong, L Y Ng, A W Mohammad. A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renewable & Sustainable Energy Reviews, 2018, 81: 536–551
https://doi.org/10.1016/j.rser.2017.08.020
9 A M Huerta-Flores, L M Torres-Martínez, E Moctezuma. et al.. Novel SrZrO3-Sb2O3 heterostructure with enhanced photocatalytic activity: band engineering and charge transference mechanism. Journal of Photochemistry and Photobiology A Chemistry, 2018, 356: 166–176
https://doi.org/10.1016/j.jphotochem.2017.12.049
10 X Xing, D Wang, X Ye. et al.. The crystal structure and photocatalytic properties of a one-dimensional Zinc(II) coordination complex. Journal of Molecular Structure, 2019, 1183: 224–229
https://doi.org/10.1016/j.molstruc.2019.01.100
11 J Sheng, H Dong, X Meng. et al.. Effect of different functional groups on photocatalytic hydrogen evolution in covalent-organic frameworks. ChemCatChem, 2019, 11(9): 2313–2319
https://doi.org/10.1002/cctc.201900058
12 H Li, Y Sun, Z Yuan. et al.. Titanium phosphonate based metal–organic frameworks with hierarchical porosity for enhanced photocatalytic hydrogen evolution. Angewandte Chemie International Edition, 2018, 57(12): 3222–3227
https://doi.org/10.1002/anie.201712925
13 P H Dinolfo, J T Hupp. Supramolecular coordination chemistry and functional microporous molecular materials. Chemistry of Materials, 2001, 13(10): 3113–3125
https://doi.org/10.1021/cm010176f
14 B Hashemi, P Zohrabi, N Raza. et al.. Metal-organic frameworks as advanced sorbents for the extraction and determination of pollutants from environmental, biological, and food media. Trends in Analytical Chemistry, 2017, 97: 65–82
https://doi.org/10.1016/j.trac.2017.08.015
15 J Meng, X Liu, C Niu. et al.. Advances in metal–organic framework coatings: versatile synthesis and broad applications. Chemical Society Reviews, 2020, 49(10): 3142–3186
https://doi.org/10.1039/C9CS00806C
16 C R Wade, M Dincă. Investigation of the synthesis, activation, and isosteric heats of CO2 adsorption of the isostructural series of metal-organic frameworks M3(BTC)2 (M = Cr, Fe, Ni, Cu, Mo, Ru). Dalton Transactions: Cambridge, England: 2003, 2012, 41(26): 7931–7938
17 Y Zhang, G Wang, W Ma. et al.. CdS p-n heterojunction co-boosting with Co3O4 and Ni-MOF-74 for photocatalytic hydrogen evolution. Dalton Transactions (Cambridge, England), 2018, 47(32): 11176–11189
https://doi.org/10.1039/C8DT02294A
18 X Deng, J Albero, L Xu. et al.. Construction of a stable Ru–Re hybrid system based on multifunctional MOF-253 for efficient photocatalytic CO2 reduction. Inorganic Chemistry, 2018, 57(14): 8276–8286
https://doi.org/10.1021/acs.inorgchem.8b00896
19 H Zhao, Q Xia, H Xing. et al.. Construction of pillared-layer MOF as efficient visible-light photocatalysts for aqueous Cr(VI) reduction and dye degradation. ACS Sustainable Chemistry & Engineering, 2017, 5(5): 4449–4456
https://doi.org/10.1021/acssuschemeng.7b00641
20 M A Syzgantseva, N F Stepanov, O A Syzgantseva. Band alignment as the method for modifying electronic structure of metal-organic frameworks. ACS Applied Materials & Interfaces, 2020, 12(15): 17611–17619
https://doi.org/10.1021/acsami.0c02094
21 Z Hasan, S H Jhung. Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions. Journal of Hazardous Materials, 2015, 283: 329–339
https://doi.org/10.1016/j.jhazmat.2014.09.046
22 P Wu, M Jiang, Y Li. et al.. Highly efficient photocatalytic hydrogen production from pure water via a photoactive metal–organic framework and its PDMS@MOF. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(17): 7833–7838
https://doi.org/10.1039/C7TA01070B
23 L Feng, K Wang, G S Day. et al.. Destruction of metal–organic frameworks: positive and negative aspects of stability and lability. Chemical Reviews, 2020, 120(23): 13087–13133
https://doi.org/10.1021/acs.chemrev.0c00722
24 K Jayaramulu, F Geyer, A Schneemann. et al.. Hydrophobic metal–organic frameworks. Advanced Materials, 2019, 31(32): 1900820
https://doi.org/10.1002/adma.201900820
25 L A Alfonso-Herrera, A M Huerta-Flores, Martínez L M Torres. et al.. M-008: a stable and reusable metalorganic framework with high crystallinity applied in the photocatalytic hydrogen evolution and the degradation of methyl orange. Journal of Photochemistry and Photobiology A, Chemistry, 2020, 389: 112240
https://doi.org/10.1016/j.jphotochem.2019.112240
26 Y An, Y Liu, H Bian. et al.. Improving the photocatalytic hydrogen evolution of UiO-67 by incorporating Ce4+-coordinated bipyridinedicarboxylate ligands. Science Bulletin, 2019, 64(20): 1502–1509
https://doi.org/10.1016/j.scib.2019.07.030
27 J Li, H Huang, P Liu. et al.. Metal-organic framework encapsulated single-atom Pt catalysts for efficient photocatalytic hydrogen evolution. Journal of Catalysis, 2019, 375: 351–360
https://doi.org/10.1016/j.jcat.2019.06.024
28 R Zhang, Y Liu, J Wang. et al.. Post-synthetic platinum complex modification of a triazine based metal organic frameworks for enhanced photocatalytic H2 evolution. Journal of Solid State Chemistry, 2019, 271: 260–265
https://doi.org/10.1016/j.jssc.2019.01.006
29 S Li, H Mei, S Yao. et al.. Well-distributed Pt-nanoparticles within confined coordination interspaces of self-sensitized porphyrin metal–organic frameworks: synergistic effect boosting highly efficient photocatalytic hydrogen evolution reaction. Chemical Science (Cambridge), 2019, 10(45): 10577–10585
https://doi.org/10.1039/C9SC01866B
30 Herrera L Á Alfonso, Reyes P K Camarillo, Flores A M Huerta. et al.. BDC-Zn MOF sensitization by MO/MB adsorption for photocatalytic hydrogen evolution under solar light. Materials Science in Semiconductor Processing, 2020, 109: 104950
https://doi.org/10.1016/j.mssp.2020.104950
31 H Yang, J Wang, J Ma. et al.. A novel BODIPY-based MOF photocatalyst for efficient visible-light-driven hydrogen evolution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(17): 10439–10445
https://doi.org/10.1039/C9TA02357G
32 Y Pi, X Feng, Y Song. et al.. Metal-organic frameworks integrate Cu photosensitizers and secondary building unit-supported Fe catalysts for photocatalytic hydrogen evolution. Journal of the American Chemical Society, 2020, 142(23): 10302–10307
https://doi.org/10.1021/jacs.0c03906
33 Y Song, Z Li, Y Zhu. et al.. Titanium hydroxide secondary building units in metal-organic frameworks catalyze hydrogen evolution under visible light. Journal of the American Chemical Society, 2019, 141(31): 12219–12223
https://doi.org/10.1021/jacs.9b05964
34 J Wang, A S Cherevan, C Hannecart. et al.. Ti-based MOFs: new insights on the impact of ligand composition and hole scavengers on stability, charge separation and photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2021, 283: 119626
https://doi.org/10.1016/j.apcatb.2020.119626
35 Y Liang, R Shang, J Lu. et al.. 2D MOFs enriched g-C3N4 nanosheets for highly efficient charge separation and photocatalytic hydrogen evolution from water. International Journal of Hydrogen Energy, 2019, 44(5): 2797–2810
https://doi.org/10.1016/j.ijhydene.2018.12.036
36 Z Gao, L Wang, L Wang. et al.. Construction of heterostructured g-C3N4@TiATA/Pt composites for efficacious photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44(45): 24407–24417
https://doi.org/10.1016/j.ijhydene.2019.07.211
37 M Li, J Li, Z Jin. 0D/2D spatial structure of CdxZn1–xS/Ni-MOF-74 for efficient photocatalytic hydrogen evolution. Dalton Transactions (Cambridge, England), 2020, 49(16): 5143–5156
https://doi.org/10.1039/D0DT00271B
38 L Sun, Y Yuan, F Wang. et al.. Selective wet-chemical etching to create TiO2@MOF frame heterostructure for efficient photocatalytic hydrogen evolution. Nano Energy, 2020, 74: 104909
https://doi.org/10.1016/j.nanoen.2020.104909
39 R Ren, H Zhao, X Sui. et al.. Exfoliated molybdenum disulfide encapsulated in a metal organic framework for enhanced photocatalytic hydrogen evolution. Catalysts, 2019, 9(1): 89
https://doi.org/10.3390/catal9010089
40 H Zhang, Y Yang, C Li. et al.. A new strategy for constructing covalently connected MOF@COF core–shell heterostructures for enhanced photocatalytic hydrogen evolution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2021, 9(31): 16743–16750
https://doi.org/10.1039/D1TA04493A
41 M Aleksandrzak, D Baranowska, T Kedzierski. et al.. Superior synergy of g-C3N4/Cd compounds and Al-MOF-derived nanoporous carbon for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 257: 117906
https://doi.org/10.1016/j.apcatb.2019.117906
42 J Xu, Y Qi, L Wang. In situ derived Ni2P/Ni encapsulated in carbon/g-C3N4 hybrids from metal-organic frameworks/g-C3N4 for efficient photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 246: 72–81
https://doi.org/10.1016/j.apcatb.2019.01.045
43 N Li, H Huang, R Bibi. et al.. Noble-metal-free MOF derived hollow CdS/TiO2 decorated with NiS cocatalyst for efficient photocatalytic hydrogen evolution. Applied Surface Science, 2019, 476: 378–386
https://doi.org/10.1016/j.apsusc.2019.01.105
44 L Lin, S Huang, Y Zhu. et al.. Construction of CdS/MoS2 heterojunction from core-shell MoS2@Cd-MOF for efficient photocatalytic hydrogen evolution. Dalton Transactions, 2019, 48(8): 2715–2721
https://doi.org/10.1039/C8DT04745F
45 L Zhang, G Wang, X Hao. et al.. MOFs-derived Cu3P@CoP p-n heterojunction for enhanced photocatalytic hydrogen evolution. Chemical Engineering Journal, 2020, 395: 125113
https://doi.org/10.1016/j.cej.2020.125113
46 B Yan, D Liu, X Feng. et al.. Ru species supported on MOF-derived N-doped TiO2/C hybrids as efficient electrocatalytic/photocatalytic hydrogen evolution reaction catalysts. Advanced Functional Materials, 2020, 30(31): 2003007
https://doi.org/10.1002/adfm.202003007
47 Y Xiao, X Wang, H Yu. et al.. MOF-5 derived C-doped ZnO decorated with Cu cocatalyst for enhancing visible-light driven photocatalytic hydrogen evolution. Journal of Physics and Chemistry of Solids, 2021, 149: 109793
https://doi.org/10.1016/j.jpcs.2020.109793
48 A M Huerta-Flores, L M Torres-Martínez, D Sánchez-Martínez. et al.. SrZrO3 powders: alternative synthesis, characterization and application as photocatalysts for hydrogen evolution from water splitting. Fuel, 2015, 158: 66–71
https://doi.org/10.1016/j.fuel.2015.05.014
49 X Feng, Y Pi, Y Song. et al.. Metal-organic frameworks significantly enhance photocatalytic hydrogen evolution and CO2 reduction with earth-abundant copper photosensitizers. Journal of the American Chemical Society, 2020, 142(2): 690–695
https://doi.org/10.1021/jacs.9b12229
50 A A Talin, A Centrone, A C Ford. et al.. Tunable electrical conductivity in metal-organic framework thin-film devices. Science, 2014, 343(6166): 66–69
https://doi.org/10.1126/science.1246738
51 N Seal, R Goswami, M Singh. et al.. An ultralight charged MOF as fluoro-switchable monitor for assorted organo-toxins: size-exclusive dye scrubbing and anticounterfeiting applications via Tb3+ sensitization. Inorganic Chemistry Frontiers, 2021, 8(2): 296–310
https://doi.org/10.1039/D0QI01091J
52 S Loera-Serna, E Ortiz, H I Beltrán. First trial and physicochemical studies on the loading of basic fuchsin, crystal violet and Black Eriochrome T on HKUST-1. New Journal of Chemistry, 2017, 41(8): 3097–3105
https://doi.org/10.1039/C6NJ03912J
53 C Li, W Qiu, W Long. et al.. Synthesis of porphyrin@MOFs type catalysts through “one-pot” self-assembly. Journal of Molecular Catalysis A Chemical, 2014, 393: 166–170
https://doi.org/10.1016/j.molcata.2014.05.023
54 A X Yan, S Yao, Y G Li. et al.. Incorporating polyoxometalates into a porous MOF greatly improves its selective adsorption of cationic dyes. Chemistry (Weinheim an der Bergstrasse, Germany), 2014, 20(23): 6927–6933
https://doi.org/10.1002/chem.201400175
55 D Esken, X Zhang, O I Lebedev. et al.. Pd@MOF-5: limitations of gas-phase infiltration and solution impregnation of [Zn4O(bdc)3] (MOF-5) with metal–organic palladium precursors for loading with Pd nanoparticles. Journal of Materials Chemistry, 2009, 19(9): 1314–1319
https://doi.org/10.1039/b815977g
56 S Kumar, A Kumar, A Kumar. et al.. Nanoscale zinc oxide based heterojunctions as visible light active photocatalysts for hydrogen energy and environmental remediation. Catalysis Reviews. Science and Engineering, 2020, 62(3): 346–405
https://doi.org/10.1080/01614940.2019.1684649
57 S V P Vattikuti. Chapter 4 - heterostructured nanomaterials: latest trends in formation of inorganic heterostructures. In: Bhagyaraj S M, Oluwafemi O S, eds. Synthesis of Inorganic Nanomaterials. Woodhead Publishing, 2018: 89–120
58 Y Li, X Li, H Zhang. et al.. Design and application of active sites in g-C3N4-based photocatalysts. Journal of Materials Science and Technology, 2020, 56: 69–88
https://doi.org/10.1016/j.jmst.2020.03.033
59 J Liu, W Fu, Y Liao. et al.. Recent advances in crystalline carbon nitride for photocatalysis. Journal of Materials Science and Technology, 2021, 91: 224–240
https://doi.org/10.1016/j.jmst.2021.03.017
60 B Luo, Y Zhao, D Jing. State-of-the-art progress in overall water splitting of carbon nitride based photocatalysts. Frontiers in Energy, 2021, 15(3): 600–620
https://doi.org/10.1007/s11708-021-0737-0
61 K T Butler, C H Hendon, A Walsh. Designing porous electronic thin-film devices: band offsets and heteroepitaxy. Faraday Discussions, 2017, 201: 207–219
https://doi.org/10.1039/C7FD00019G
[1] Xiaoping CHEN, Jihai XIONG, Jinming SHI, Song XIA, Shuanglin GUI, Wenfeng SHANGGUAN. Roles of various Ni species on TiO2 in enhancing photocatalytic H2 evolution[J]. Front. Energy, 2019, 13(4): 684-690.
[2] Hongzhao LI, Kyung KIM, Brett HALLAM, Bram HOEX, Stuart WENHAM, Malcolm ABBOTT. POCl3 diffusion for industrial Si solar cell emitter formation[J]. Front. Energy, 2017, 11(1): 42-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed