Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2023, Vol. 17 Issue (4) : 450-462    https://doi.org/10.1007/s11708-022-0858-0
REVIEW ARTICLE
Polymeric nanocomposites for electrocaloric refrigeration
Yu CAI1, Qiang LI1, Feihong DU1, Jiawang FENG1, Donglin HAN1, Shanyu ZHENG1, Shihao YANG1, Yingjing ZHANG1, Binbin YU1, Junye SHI2, Xiaoshi QIAN2()
1. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China; Interdisciplinary Research Center, Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China; Interdisciplinary Research Center, Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Jiao Tong University Zhongguancun Research Institute, Liyang 213300, China
 Download: PDF(4148 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Electrocaloric refrigeration represents an alternative solid-state cooling technology that has the potential to reach the ultimate goal of achieving zero-global-warming potential, highly efficient refrigeration, and heat pumps. To date, both polymeric and inorganic oxides have demonstrated giant electrocaloric effect as well as respective cooling devices. Although both polymeric and inorganic oxides have been identified as promising cooling methods that are distinguishable from the traditional ones, they still pose many challenges to more practical applications. From an electrocaloric material point of view, electrocaloric nanocomposites may provide a solution to combine the beneficial effects of both organic and inorganic electrocaloric materials. This article reviews the recent advancements in polymer-based electrocaloric composites and the state-of-the-art cooling devices operating these nanocomposites. From a device point of view, it discusses the existing challenges and potential opportunities of electrocaloric nanocomposites.

Keywords nanocomposites      electrocaloric      refrigeration      polymer     
Corresponding Author(s): Xiaoshi QIAN   
About author:

* These authors contributed equally to this work.

Online First Date: 16 January 2023    Issue Date: 29 August 2023
 Cite this article:   
Yu CAI,Qiang LI,Feihong DU, et al. Polymeric nanocomposites for electrocaloric refrigeration[J]. Front. Energy, 2023, 17(4): 450-462.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-022-0858-0
https://academic.hep.com.cn/fie/EN/Y2023/V17/I4/450
Fig.1  Electrocaloric nanocomposites for a more applicable device with a good electrocaloric effect, thermal conductivity, and mechanical performance.
Material T/K ΔE/(MV?m−1) ΔS/(J?(kg?K)−1) ΔT/K k/(W?(m?K)−1) Ref.
Copolymer P(VDF-TrFE)55/45 mol% 353 200 60.8 12.6 Neese et al. [5]
Terpolymer P(VDF-TrFE-CFE)59.2/33.6/7.2 mol% 303 100 37.8 7.6 Li et al. [27]
P(VDF-TrFE-CFE)/PMN-PT 303 180 150 31 Li et al. [28]
P(VDF-TrFE-CFE)/BNNS/BST67 303 250 210 50.5 Zhang et al. [29]
P(VDF-TrFE-CFE)/BNNSs/BST1/2/3 273–333 200 170 35 Zhang et al. [30]
P(VDF-TrFE-CFE)/BST(NWs) Room temperature 100 96 19.5 Zhang et al. [31]
P(VDF-TrFE-CFE)/AAO Room temperature 50 12 2.5 6 Zhang et al. [32]
P(VDF-TrFE)/BST 351 60 / 2.5 Jiang et al. [33]
P(VDF-TrFE-CFE)/graphene Room temperature 40 24.8 5.2 Yang et al. [34]
P(VDF-TrFE-CFE)/BST_nfs 303 200 105 44.3 Qian et al. [35]
P(VDF-TrFE-CFE)/BTSn11 Room temperature 100 44 9.08 Lu et al. [36]
P(VDF-TrFE-CFE)/BFBZT 303 75 78 13.8 Chen et al. [37]
Polymer/BST NW array Room temperature 60 16.3 10.1 / Zhang et al. [38]
Tab.1  Summary of key properties of EC nanocomposites
Fig.2  Summarized EC temperature changes and EC strengths achieved in different materials and the corresponding electric field.
Fig.3  Recent advances in electrocaloric nanocomposites.
Fig.4  Interfacial research.
Fig.5  Interface model.
Fig.6  EC cooling device based on polymers and their nanocomposites.
1 R Ma, Z Zhang, K Tong. et al.. Highly efficient electrocaloric cooling with electrostatic actuation. Science, 2017, 357(6356): 1130–1134
https://doi.org/10.1126/science.aan5980
2 J Shi, D Han, Z Li. et al.. Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration. Joule, 2019, 3(5): 1200–1225
https://doi.org/10.1016/j.joule.2019.03.021
3 X Qian, D Han, L Zheng. et al.. High-entropy polymer produces a giant electrocaloric effect at low fields. Nature, 2021, 600(7890): 664–669
https://doi.org/10.1038/s41586-021-04189-5
4 H Gu, X Qian, X Li. et al.. A chip scale electrocaloric effect based cooling device. Applied Physics Letters, 2013, 102(12): 122904
https://doi.org/10.1063/1.4799283
5 B Neese, B Chu, S G Lu. et al.. Large electrocaloric effect in ferroelectric polymers near room temperature. Science, 2008, 321(5890): 821–823
https://doi.org/10.1126/science.1159655
6 H CuiW He Q Pei, et al.. Electrocaloric effects in ferroelectric polymers. In: Asadi K, ed. Organic Ferroelectric Materials and Applications.Woodhead Publishing, 2022: 535–570
7 X Qian, S Wu, E Furman. et al.. Ferroelectric polymers as multifunctional electroactive materials: recent advances, potential, and challenges. MRS Communications, 2015, 5(2): 115–129
https://doi.org/10.1557/mrc.2015.20
8 Y Liu, B Zhang, W Xu. et al.. Chirality-induced relaxor properties in ferroelectric polymers. Nature Materials, 2020, 19(11): 1169–1174
https://doi.org/10.1038/s41563-020-0724-6
9 S G Lu, B Rožič, Q M Zhang. et al.. Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect. Applied Physics Letters, 2010, 97(16): 162904
https://doi.org/10.1063/1.3501975
10 J H Qiu, J N Ding, N Y Yuan. et al.. Effect of misfit strain on the electrocaloric effect of P(VDF-TrFE) copolymer thin films. European Physical Journal B, 2011, 84(1): 25–28
https://doi.org/10.1140/epjb/e2011-20674-y
11 X Li, X Qian, H Gu. et al.. Giant electrocaloric effect in ferroelectric poly(vinylidenefluoride-trifluoroethylene) copolymers near a first-order ferroelectric transition. Applied Physics Letters, 2012, 101(13): 132903
https://doi.org/10.1063/1.4756697
12 X Chen, X Li, X Qian. et al.. A polymer blend approach to tailor the ferroelectric responses in P(VDF–TrFE) based copolymers. Polymer, 2013, 54(9): 2373–2381
https://doi.org/10.1016/j.polymer.2013.02.041
13 R L Moreira. Electrocaloric effect in γ-irradiated P(VDF-TrFE) copolymers with relaxor features. Ferroelectrics, 2013, 446(1): 1–8
https://doi.org/10.1080/00150193.2013.820971
14 X Qian, H Ye, T Yang. et al.. Internal biasing in relaxor ferroelectric polymer to enhance the electrocaloric effect. Advanced Functional Materials, 2015, 25(32): 5134–5139
https://doi.org/10.1002/adfm.201501840
15 X Qian, T Yang, T Zhang. et al.. Anomalous negative electrocaloric effect in a relaxor/normal ferroelectric polymer blend with controlled nano- and meso-dipolar couplings. Applied Physics Letters, 2016, 108(14): 142902
https://doi.org/10.1063/1.4944776
16 W M Jr Prest, D J Luca. The formation of the γ phase from the α and β polymorphs of polyvinylidene fluoride. Journal of Applied Physics, 1978, 49(10): 5042–5047
https://doi.org/10.1063/1.324439
17 C Huang, R Klein, X Feng. et al.. Poly(vinylidene fluoride-trifluoroethylene) based high performance electroactive polymers. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(2): 299–311
https://doi.org/10.1109/TDEI.2004.1285901
18 D Saranya, A R Chaudhuri, J Parui. et al.. Electrocaloric effect of PMN-PT thin films near morphotropic phase boundary. Bulletin of Materials Science, 2009, 32(3): 259–262
https://doi.org/10.1007/s12034-009-0039-3
19 Y Bai, G P Zheng, K Ding. et al.. The giant electrocaloric effect and high effective cooling power near room temperature for BaTiO3 thick film. Journal of Applied Physics, 2011, 110(9): 094103
https://doi.org/10.1063/1.3658251
20 B Peng, H Fan, Q Zhang. A giant electrocaloric effect in nanoscale antiferroelectric and ferroelectric phases coexisting in a relaxor Pb0.8Ba0.2ZrO3 thin film at room temperature. Advanced Functional Materials, 2013, 23(23): 2987–2992
https://doi.org/10.1002/adfm.201202525
21 H Ye, X Qian, D Jeong. et al.. Giant electrocaloric effect in BaZr0.2Ti0.8O3 thick film. Applied Physics Letters, 2014, 105(15): 152908
https://doi.org/10.1063/1.4898599
22 H J Ye, X S Qian, J Lu. et al.. Dielectric and electrocaloric responses of Ba(Zr0.2Ti0.8)O3 bulk ceramics and thick films with sintering aids. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(3): 1501–1505
https://doi.org/10.1109/TDEI.2015.7116344
23 Y Hou, L Yang, X Qian. et al.. Electrocaloric response near room temperature in Zr- and Sn-doped BaTiO3 systems. Philosophical Transactions of the Royal Society A, Mathematical, Physical, and Engineering Sciences, 2016, 374(2074): 20160055
https://doi.org/10.1098/rsta.2016.0055
24 Y Hou, L Yang, X Qian. et al.. Enhanced electrocaloric effect in composition gradient bilayer thick films. Applied Physics Letters, 2016, 108(13): 133501
https://doi.org/10.1063/1.4944409
25 J Qian, M Guo, J Jiang. et al.. Enhanced electrocaloric strength of P(VDF-TrFE-CFE) induced by edge-on lamellae. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2019, 7(11): 3212–3217
https://doi.org/10.1039/C9TC00239A
26 J Qian, J Jiang, Y Shen. Enhanced electrocaloric strength in P(VDF-TrFE-CFE) by decreasing the crystalline size. Journal of Materiomics, 2019, 5(3): 357–362
https://doi.org/10.1016/j.jmat.2019.04.001
27 X Li, X Qian, S G Lu. et al.. Tunable temperature dependence of electrocaloric effect in ferroelectric relaxor poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene terpolymer. Applied Physics Letters, 2011, 99(5): 052907
https://doi.org/10.1063/1.3624533
28 Q Li, G Zhang, X Zhang. et al.. Relaxor ferroelectric-based electrocaloric polymer nanocomposites with a broad operating temperature range and high cooling energy. Advanced Materials, 2015, 27(13): 2236–2241
https://doi.org/10.1002/adma.201405495
29 G Zhang, Q Li, H Gu. et al.. Ferroelectric polymer nanocomposites for room-temperature electrocaloric refrigeration. Advanced Materials, 2015, 27(8): 1450–1454
https://doi.org/10.1002/adma.201404591
30 G Zhang, B Fan, P Zhao. et al.. Ferroelectric polymer nanocomposites with complementary nanostructured fillers for electrocaloric cooling with high power density and great efficiency. ACS Applied Energy Materials, 2018, 1(3): 1344–1354
https://doi.org/10.1021/acsaem.8b00052
31 G Zhang, X Zhang, T Yang. et al.. Colossal room-temperature electrocaloric effect in ferroelectric polymer nanocomposites using nanostructured barium strontium titanates. ACS Nano, 2015, 9(7): 7164–7174
https://doi.org/10.1021/acsnano.5b03371
32 G Zhang, L Weng, Z Hu. et al.. Nanoconfinement-induced giant electrocaloric effect in ferroelectric polymer nanowire array integrated with aluminum oxide membrane to exhibit record cooling power density. Advanced Materials, 2019, 31(8): 1806642
https://doi.org/10.1002/adma.201806642
33 Z Y Jiang, X C Zheng, G P Zheng. The enhanced electrocaloric effect in P(VDF-TrFE) copolymer with barium strontium titanate nano-fillers synthesized via an effective hydrothermal method. RSC Advances, 2015, 5(76): 61946–61954
https://doi.org/10.1039/C5RA10508K
34 L Yang, X Qian, C Koo. et al.. Graphene enabled percolative nanocomposites with large electrocaloric efficient under low electric fields over a broad temperature range. Nano Energy, 2016, 22: 461–467
https://doi.org/10.1016/j.nanoen.2016.02.026
35 J Qian, R Peng, Z Shen. et al.. Interfacial coupling boosts giant electrocaloric effects in relaxor polymer nanocomposites: in situ characterization and phase-field simulation. Advanced Materials, 2019, 31(5): e1801949
36 Y Lu, J Yu, J Huang. et al.. Enhanced electrocaloric effect for refrigeration in lead-free polymer composite films with an optimal filler loading. Applied Physics Letters, 2019, 114(23): 233901
https://doi.org/10.1063/1.5093968
37 Y Chen, J Qian, J Yu. et al.. An all-scale hierarchical architecture induces colossal room-temperature electrocaloric effect at ultralow electric field in polymer nanocomposites. Advanced Materials, 2020, 32(30): 1907927
https://doi.org/10.1002/adma.201907927
38 G Zhang, X Zhang, H Huang. et al.. Toward wearable cooling devices: highly flexible electrocaloric Ba0.67Sr0.33TiO3 nanowire Arrays. Advanced Materials, 2016, 28(24): 4811–4816
https://doi.org/10.1002/adma.201506118
39 X Chen, X Qian, X Li. et al.. Enhanced electrocaloric effect in poly(vinylidene fluoride-trifluoroethylene)-based terpolymer/copolymer blends. Applied Physics Letters, 2012, 100(22): 222902
https://doi.org/10.1063/1.4722932
40 F Le Goupil, F Coin, N Pouriamanesh. et al.. Electrocaloric enhancement induced by cocrystallization of vinylidene difluoride-based polymer blends. ACS Macro Letters, 2021, 10(12): 1555–1562
https://doi.org/10.1021/acsmacrolett.1c00576
41 A Ullah, A ur Rahman, C Won Ahn. et al.. Enhancement of dielectric and energy density properties in the PVDF-based copolymer/terpolymer blends. Polymer Engineering and Science, 2015, 55(6): 1396–1402
https://doi.org/10.1002/pen.24083
42 H AziguliY LiuG Zhang, et al.. Tuning the electrocaloric reversibility in ferroelectric copolymers by a blend approach. Europhysics Letters, 2019, 125(5): 57001 (1−6)
43 X Zhang, Y Shen, Z Shen. et al.. Achieving high energy density in PVDF-based polymer blends: suppression of early polarization saturation and enhancement of breakdown strength. ACS Applied Materials & Interfaces, 2016, 8(40): 27236–27242
https://doi.org/10.1021/acsami.6b10016
44 S Lu, Q Zhang. Large electrocaloric effect in relaxor ferroelectrics. Journal of Advanced Dielectrics, 2012, 2(3): 1230011
https://doi.org/10.1142/S2010135X12300113
45 X Chen, X Li, X Qian. et al.. A nanocomposite approach to tailor electrocaloric effect in ferroelectric polymer. Polymer, 2013, 54(20): 5299–5302
https://doi.org/10.1016/j.polymer.2013.07.052
46 J Chen, X Xiong, Q Zhang. et al.. P(VDF-TrFE)/PMMA blended films with enhanced electrowetting responses and superior energy storage performance. Polymers, 2019, 11(3): 526(1–13)
https://doi.org/10.3390/polym11030526
47 H Jung, J Kim, J Lim. et al.. Energy storage properties of blended polymer films with normal ferroelectric P(VDF-HFP) and relaxor ferroelectric P(VDF-TrFE-CFE). Electronic Materials Letters, 2020, 16(1): 47–54
https://doi.org/10.1007/s13391-019-00188-x
48 L Shaobo, L Yanqiu. Research on the electrocaloric effect of PMN/PT solid solution for ferroelectrics MEMS microcooler. Materials Science and Engineering B, 2004, 113(1): 46–49
https://doi.org/10.1016/j.mseb.2004.06.010
49 H Kaddoussi, Y Gagou, A Lahmar. et al.. Ferroelectric phase changes and electrocaloric effects in Ba(Zr0.1Ti0.9)1−xSnxO3 ceramics solid solution. Journal of Materials Science, 2016, 51(7): 3454–3462
https://doi.org/10.1007/s10853-015-9663-z
50 X Chen, X Qian, X Li. et al.. Enhanced electrocaloric effect in poly(vinylidene fluoride-trifluoroethylene)-based composites. MRS Online Proceedings Library, 2012, 1490: 86–91
https://doi.org/10.1557/opl.2012.1733
51 M TokkanM M DemirU Adem. Enhanced electrocaloric effect of P(VDF-TrFE)-based nanocomposites with Ca and Sn co-doped BaTiO3 particles. Materials Science, 2022, doi: 10.2139/ssrn.4091479
52 G De Cicco, B Morten, D Dalmonego. et al.. Pyroelectricity of PZT-based thick-films. Sensors and Actuators. A, Physical, 1999, 76(1–3): 409–415
https://doi.org/10.1016/S0924-4247(99)00056-4
53 M Valant. Electrocaloric materials for future solid-state refrigeration technologies. Progress in Materials Science, 2012, 57(6): 980–1009
https://doi.org/10.1016/j.pmatsci.2012.02.001
54 X Qian, H Ye, Y Zhang. et al.. Giant electrocaloric response over a broad temperature range in modified BaTiO3 ceramics. Advanced Functional Materials, 2014, 24(9): 1300–1305
https://doi.org/10.1002/adfm.201302386
55 A Axelsson, F Le Goupil, M Valant. et al.. Electrocaloric effect in lead-free Aurivillius relaxor ferroelectric ceramics. Acta Materialia, 2017, 124: 120–126
https://doi.org/10.1016/j.actamat.2016.11.001
56 X Kang, S Jia, J Peng. et al.. Electromagnetic-driven electrocaloric cooling device based on ternary ferroelectric composites. Composites. Part B, Engineering, 2021, 227: 109391
https://doi.org/10.1016/j.compositesb.2021.109391
57 H Wang, Y Meng, Z Zhang. et al.. Self-actuating electrocaloric cooling fibers. Advanced Energy Materials, 2020, 10(12): 1903902
https://doi.org/10.1002/aenm.201903902
58 Z Dang, J Yuan, J Zha. et al.. Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Progress in Materials Science, 2012, 57(4): 660–723
https://doi.org/10.1016/j.pmatsci.2011.08.001
59 J Wang, C Wu, R Liu. et al.. P(VDF–TrFE–CFE)-based percolative composites exhibiting significantly enhanced dielectric properties. Polymer Bulletin, 2013, 70(4): 1327–1335
https://doi.org/10.1007/s00289-013-0923-2
60 S Tu, Q Jiang, X Zhang. et al.. Large dielectric constant enhancement in MXene percolative polymer composites. ACS Nano, 2018, 12(4): 3369–3377
https://doi.org/10.1021/acsnano.7b08895
61 S Tu, Q Jiang, J Zhang. et al.. Enhancement of dielectric permittivity of Ti3C2Tx MXene/polymer composites by controlling flake size and surface termination. ACS Applied Materials & Interfaces, 2019, 11(30): 27358–27362
https://doi.org/10.1021/acsami.9b09137
62 S Jana, S Garain, S Sen. et al.. The influence of hydrogen bonding on the dielectric constant and the piezoelectric energy harvesting performance of hydrated metal salt mediated PVDF films. Physical Chemistry Chemical Physics, 2015, 17(26): 17429–17436
https://doi.org/10.1039/C5CP01820J
63 X Wu, D Kang, N Liu. et al.. Microstructure manipulation in PVDF/SMA/MWCNTs ultrafiltration membranes: effects of hydrogen bonding and crystallization during the membrane formation. Separation and Purification Technology, 2021, 278: 119523
https://doi.org/10.1016/j.seppur.2021.119523
64 J Li, S I Seok, B Chu. et al.. Nanocomposites of ferroelectric polymers with TiO2 nanoparticles exhibiting significantly enhanced electrical energy density. Advanced Materials, 2009, 21(2): 217–221
https://doi.org/10.1002/adma.200801106
65 Z H Shen, J J Wang, Y Lin. et al.. High-throughput phase-field design of high-energy-density polymer nanocomposites. Advanced Materials, 2018, 30(2): 1704380
https://doi.org/10.1002/adma.201704380
66 Z M Dang, L Wang, Y Yin. et al.. Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Advanced Materials, 2007, 19(6): 852–857
https://doi.org/10.1002/adma.200600703
67 C Nan. Physics of inhomogeneous inorganic materials. Progress in Materials Science, 1993, 37(1): 66–68
https://doi.org/10.1016/0079-6425(93)90004-5
68 Z Dan, J Jiang, X Zhang. et al.. Interfacial effects of BaTiO3@TiO2 nanofibers on dielectric relaxation processes of P(VDF-TrFE-CFE) nanocomposites. Ceramics International, 2020, 46(1): 1119–1123
https://doi.org/10.1016/j.ceramint.2019.09.080
69 Y Zhang, C Zhang, Y Feng. et al.. Energy storage enhancement of P(VDF-TrFE-CFE)-based composites with double-shell structured BZCT nanofibers of parallel and orthogonal configurations. Nano Energy, 2019, 66: 104195(1–13)
https://doi.org/10.1016/j.nanoen.2019.104195
70 A N Morozovska, E A Eliseev, M D Glinchuk. et al.. Analytical description of the size effect on pyroelectric and electrocaloric properties of ferroelectric nanoparticles. Physical Review Materials, 2019, 3(10): 104414
https://doi.org/10.1103/PhysRevMaterials.3.104414
71 V K Prateek, R K Thakur. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chemical Reviews, 2016, 116(7): 4260–4317
https://doi.org/10.1021/acs.chemrev.5b00495
72 T Tanaka, G C Montanari, R Mulhaupt. Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(5): 763–784
https://doi.org/10.1109/TDEI.2004.1349782
73 T Tanaka. Dielectric nanocomposites with insulating properties. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(5): 914–928
https://doi.org/10.1109/TDEI.2005.1522186
74 T J Lewis. Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(5): 739–753
https://doi.org/10.1109/TDEI.2004.1349779
75 H Gu, B Craven, X Qian. et al.. Simulation of chip-size electrocaloric refrigerator with high cooling-power density. Applied Physics Letters, 2013, 102(11): 112901
https://doi.org/10.1063/1.4796184
76 S Crossley, J R McGinnigle, S Kar-Narayan. et al.. Finite-element optimisation of electrocaloric multilayer capacitors. Applied Physics Letters, 2014, 104(8): 082909
https://doi.org/10.1063/1.4866256
77 J E Mark. Physical Properties of Polymers Handbook. New York: Springer, 2007, 156–159
78 J L Plawsky. Transport Phenomena Fundamentals. 4th ed. CRC Press, 2009, 96–98
79 R C Zeller, R O Pohl. Thermal conductivity and specific heat of noncrystalline solids. Physical Review. B, Solid State, 1971, 4(6): 2029–2041
https://doi.org/10.1103/PhysRevB.4.2029
80 M D Li, X Q Shen, X Chen. et al.. Thermal management of chips by a device prototype using synergistic effects of 3-D heat-conductive network and electrocaloric refrigeration. Nature Communications, 2022, 13(1): 5849(1–8)
https://doi.org/10.1038/s41467-022-33596-z
81 B Nair, T Usui, S Crossley. et al.. Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range. Nature, 2019, 575(7783): 468–472
https://doi.org/10.1038/s41586-019-1634-0
82 Y Nouchokgwe, P Lheritier, T Usui. et al.. Materials efficiency of electrocaloric lead scandium tantalate multilayer capacitors. Scripta Materialia, 2022, 219: 114873
https://doi.org/10.1016/j.scriptamat.2022.114873
83 D Guo, J Gao, Y J Yu. et al.. Design and modeling of a fluid-based micro-scale electrocaloric refrigeration system. International Journal of Heat and Mass Transfer, 2014, 72: 559–564
https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.043
84 Y Meng, Z Zhang, H Wu. et al.. A cascade electrocaloric cooling device for large temperature lift. Nature Energy, 2020, 5(12): 996–1002
https://doi.org/10.1038/s41560-020-00715-3
85 Y Bo, Q Zhang, H Cui. et al.. Electrostatic actuating double-unit electrocaloric cooling device with high efficiency. Advanced Energy Materials, 2021, 11(13): 2003771
https://doi.org/10.1002/aenm.202003771
86 H Cui, Q Zhang, Y Bo. et al.. Flexible microfluidic electrocaloric cooling capillary tube with giant specific device cooling power density. Joule, 2022, 6(1): 258–268
https://doi.org/10.1016/j.joule.2021.12.010
87 J Qian, R Peng, Z Shen. et al.. Interfacial coupling boosts giant electrocaloric effects in relaxor polymer nanocomposites: in situ characterization and phase-field simulation. Advanced Materials, 2018, 31(5): 1801949
https://doi.org/10.1002/adma.201801949
88 Y Thakur, T Zhang, C Iacob. et al.. Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers. Nanoscale, 2017, 9(31): 10992–10997
https://doi.org/10.1039/C7NR01932G
89 T Zhang, X Chen, Q Zhang. et al.. Dielectric enhancement over a broad temperature by nanofiller at ultra-low volume content in poly(ether methyl ether urea). Applied Physics Letters, 2020, 117(7): 072905
https://doi.org/10.1063/5.0020280
90 B Zhang, X Chen, W Lu. et al.. Morphology-induced dielectric enhancement in polymer nanocomposites. Nanoscale, 2021, 13(24): 10933–10942
https://doi.org/10.1039/D1NR00165E
[1] Xavier MOYA, Neil D. MATHUR. A hot future for cool materials[J]. Front. Energy, 2023, 17(4): 447-449.
[2] Saket MATHUR, Benjamin ROGERS, Wei WEI. Organic conjugated polymers and polymer dots as photocatalysts for hydrogen production[J]. Front. Energy, 2021, 15(3): 667-677.
[3] Ruixiang WANG, Yihao ZHANG, Haizhou WU. Tribological properties of onion like fullerenes and NiFe2O4 nanocomposites in reciprocating motion[J]. Front. Energy, 2021, 15(1): 208-212.
[4] Zhengxu BIAN, Zehua TANG, Jinfeng XIE, Junhao ZHANG, Xingmei GUO, Yuanjun LIU, Aihua YUAN, Feng ZHANG, Qinghong KONG. Preparation and lithium storage performances of g-C3N4/Si nanocomposites as anode materials for lithium-ion battery[J]. Front. Energy, 2020, 14(4): 759-766.
[5] Kumar Sai SMARAN, Rajashekar BADAM, Raman VEDARAJAN, Noriyoshi MATSUMI. Flame-retardant properties of in situ sol-gel synthesized inorganic borosilicate/silicate polymer scaffold matrix comprising ionic liquid[J]. Front. Energy, 2019, 13(1): 163-171.
[6] Zemin BO, Kai ZHANG, Peijie SUN, Xiaojing LV, Yiwu WENG. Performance analysis of cogeneration systems based on micro gas turbine (MGT), organic Rankine cycle and ejector refrigeration cycle[J]. Front. Energy, 2019, 13(1): 54-63.
[7] Eric TERVO, Elham BAGHERISERESHKI, Zhuomin ZHANG. Near-field radiative thermoelectric energy converters: a review[J]. Front. Energy, 2018, 12(1): 5-21.
[8] Gang WU. Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells[J]. Front. Energy, 2017, 11(3): 286-298.
[9] Jun HUANG, Zhe LI, Jianbo ZHANG. Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing and curse of ionomer[J]. Front. Energy, 2017, 11(3): 334-364.
[10] Tian TIAN, Jianjun TANG, Wei GUO, Mu PAN. Accelerated life-time test of MEA durability under vehicle operating conditions in PEM fuel cell[J]. Front. Energy, 2017, 11(3): 326-333.
[11] Huashan LI, Xianbiao BU, Lingbao WANG, Zhenneng LU, Weibin MA. Composite adsorbents of CaCl2 and sawdust prepared by carbonization for ammonia adsorption refrigeration[J]. Front Energ, 2012, 6(4): 356-360.
[12] CHANG Kun, LI Qiang. Refrigeration cycle for cryogenic separation of hydrogen from coke oven gas[J]. Front. Energy, 2008, 2(4): 484-488.
[13] HUANG Dongping, DING Guoliang, QUACK Hans. New refrigeration system using CO vapor-solid as refrigerant[J]. Front. Energy, 2008, 2(4): 494-498.
[14] WU Ning, ZHANG Wugao, HUANG Zhen. Impact of dimethyl ether on engine seal materials[J]. Front. Energy, 2008, 2(3): 279-284.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed