Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2024, Vol. 18 Issue (5) : 665-683    https://doi.org/10.1007/s11708-024-0922-z
Capacity-operation collaborative optimization of the system integrated with wind power/photovoltaic/concentrating solar power with S-CO2 Brayton cycle
Yangdi Hu, Rongrong Zhai(), Lintong Liu
School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
 Download: PDF(4446 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper proposes a new power generating system that combines wind power (WP), photovoltaic (PV), trough concentrating solar power (CSP) with a supercritical carbon dioxide (S-CO2) Brayton power cycle, a thermal energy storage (TES), and an electric heater (EH) subsystem. The wind power/photovoltaic/concentrating solar power (WP−PV−CSP) with the S-CO2 Brayton cycle system is powered by renewable energy. Then, it constructs a bi-level capacity-operation collaborative optimization model and proposes a non-dominated sorting genetic algorithm-II (NSGA-II) nested linear programming (LP) algorithm to solve this optimization problem, aiming to obtain a set of optimal capacity configurations that balance carbon emissions, economics, and operation scheduling. Afterwards, using Zhangbei area, a place in China which has significant wind and solar energy resources as a practical application case, it utilizes a bi-level optimization model to improve the capacity and annual load scheduling of the system. Finally, it establishes three reference systems to compare the annual operating characteristics of the WP−PV−CSP (S-CO2) system, highlighting the benefits of adopting the S-CO2 Brayton cycle and equipping the system with EH. After capacity-operation collaborative optimization, the levelized cost of energy (LCOE) and carbon emissions of the WP−PV−CSP (S-CO2) system are decreased by 3.43% and 92.13%, respectively, compared to the reference system without optimization.

Keywords wind power/photovoltaic/concentrating solar power (WP−PV−CSP)      supercritical carbon dioxide (S-CO2) Brayton cycle      capacity-operation collaborative optimization      sensitive analysis     
Corresponding Author(s): Rongrong Zhai   
Online First Date: 26 January 2024    Issue Date: 16 October 2024
 Cite this article:   
Yangdi Hu,Rongrong Zhai,Lintong Liu. Capacity-operation collaborative optimization of the system integrated with wind power/photovoltaic/concentrating solar power with S-CO2 Brayton cycle[J]. Front. Energy, 2024, 18(5): 665-683.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-024-0922-z
https://academic.hep.com.cn/fie/EN/Y2024/V18/I5/665
Fig.1  WP−PV−CSP (S-CO2) integrated energy system.
Fig.2  Operation strategy of WP−PV−CSP (S-CO2) system. DNI indicates direct normal irradiance; GI indicates global horizontal irradiance; HT indicates hot tank.
Parameter Value Parameter Value
AMOD/m2 1.675 Tc,ref/°C 25
G INOMC/(W·m−2) 800 TNOMC/°C 46
ηINV/% 97.8 Ta,NOMC/°C 20
fPV/% 80 UL,NOMC 9.5
ηPV,NOM/% 14.9 τ ?α 0.8
Tab.1  Values of the corresponding parameters in PV model
Parameter Value
prated/MW 1.675
vcut,in/(m·s−1) 3.5
vcut,out/(m·s−1) 25
vrated/(m·s−1) 12
h2/m 70
Tab.2  Values of corresponding parameters in WP model
Parameter Value Parameter Value
Heat transfer oil temperature/K 668 Turbine isentropic efficiency/% 93
Turbine inlet temperature/K 623 Compressor isentropic efficiency/% 89
Turbine inlet pressure/MPa 25 Generator efficiency/% 97
Compressor inlet temperature/K 308 Motor efficiency/% 90
Compressor inlet pressure/MPa 8.06 Power cycle efficiency/% 36.92
Tab.3  Design parameters of S-CO2 Brayton cycle at different installed capacities
Parameter Capacity/MW
1 10 50 100 200
Heater heat transfer capacity UAheater/(kW·K−1) 121.12 1211.20 6056.01 12112.02 24224.04
Recuperator heat transfer capacity UArecup/(kW·K−1) 61.62 616.18 3080.88 6161.76 12323.52
Pre-cooler heat transfer capacity UAcooler/(kW·K−1) 64.45 644.48 3222.40 6444.80 12889.60
Tab.4  Heat transfer capacity of heat exchangers in S-CO2 Brayton cycle at different capacities
Input parameters Collection efficiency
DNI/(W·m−2) Tin/K Calculated data/% Reference data/% Error/%
600 490 81.93 81.90 0.03
600 510 79.92 80.26 0.34
600 530 77.91 77.84 0.07
600 550 75.51 74.47 1.04
600 570 69.16 69.98 0.82
600 590 62.11 64.19 2.08
700 490 82.58 82.29 0.29
700 510 80.64 81.00 0.36
700 530 78.94 79.14 0.20
700 550 75.31 76.55 1.24
700 570 74.54 73.12 1.42
700 590 69.53 68.72 0.81
Tab.5  Relevant data for collector model validation
Fig.3  Algorithm flowchart of bi-level optimization.
Parameter Decision variable Unit Boundary condition
Ri,1 NLoop [165, 776]
Ri,2 CCSP MW [0, 200]
Ri,3 CTES h [0, 20]
Ri,4 CEH MW [0, 60]
Ri,5 CPV MW [0, 200]
Ri,6 NWT [0, 66]
Tab.6  Boundary condition for decision variable
Fig.4  Model validation of NSGA-II algorithm.
Fig.5  Hourly meteorological data and load demand for the case.
Parameter Value Unit
PV
 Investment costs (ICs) 1003 $/kW
 Operation and maintenance (O&M) costs 2.15 $/(kW·a)
 Auxiliary equipment 350 $/kW
 Inverter 105 $/kW
WP
 ICs 909.98 $/kW
 O&M costs 0.857 $/(kW·a)
 Auxiliary equipment 35 $/kW
 Inverter 105 $/kW
SF
 ICs 242 $/m2
 Auxiliary equipment 0.285 × IC $/m2
 O&M costs 0.017 × IC $/(m2·a)
TES
 ICs 31.4 $/kWh
 Auxiliary equipment 0.285 × IC $/kWh
 O&M costs 0.017 × IC $/(kWh·a)
S-CO2 Brayton cycle
 IC of compressor 6898 ×(WC×1000)0.7865 $
 IC of turbine 7790 ×(WT×1000)0.6842 $
 IC of heater 3500 ×U Aheater $
 IC of recuperator 1200 ×U Arecup $
 IC of cooler 2300 ×U Acooler $
 Auxiliary equipment 340 $/kW
 Fixed O&M costs 66 $/(kW·a)
 Variable O&M costs 3500 $/kWh
Tab.7  Main economic data of the WP−PV−CSP (S-CO2) system
Fig.6  Pareto front curve of WP−PV−CSP (S-CO2) system.
Number NLoop CCSP/MW CTES/h CEH/MW CPV/MW NWT LCOE/($·kWh−1) CO2 emissions/(104 t·a−1)
1 165 10 14 27 23 0 0.1360 2.6299
24 165 12 14 33 34 13 0.1446 2.0756
55 291 26 14 42 48 26 0.1736 1.5584
108 659 74 12 60 104 50 0.2727 0.6406
163 395 169 5 40 74 17 0.3936 0.1208
200 456 178 4 39 186 43 0.5259 0.0021
Tab.8  Pareto optimal solution set
Weight NLoop CCSP/MW CTES/h CEH/MW CPV/MW NWT LCOE/($·kWh−1) CO2 emissions/(104 t·a−1)
[0.45, 0.55] 257 64 14 59 117 49 0.2581 0.7186
[0.29, 0.71] 776 98 13 60 132 49 0.3342 0.3647
[0.21, 0.79] 395 170 5 39 79 18 0.3975 0.0914
[0.17, 0.83] 456 167 5 43 68 22 0.3990 0.0831
[0.14, 0.86] 456 167 5 43 68 22 0.3990 0.0831
[0.12, 0.88] 456 167 6 46 71 23 0.4088 0.0501
[0.10, 0.90] 456 167 7 45 72 19 0.4196 0.0370
[0.09, 0.91] 456 167 7 45 72 19 0.4196 0.0370
[0.08, 0.92] 456 167 7 45 72 19 0.4196 0.0370
Tab.9  Compromise solutions corresponding to different weights
Fig.7  Daily output electricity power of WP-PV-CSP (S-CO2) system.
Item Reference System 1 Reference System 2 Reference System 3 WP−PV−CSP (S-CO2) system
Capacity configuration
   NLoop 456 456 395 456
   CCSP/MW 167 167 130 167
   CTES/h 7 7 8 7
   CEH/MW 0 45 20 45
   CPV/MW 72 72 80 72
   NWT 19 19 30 19
Economic parameter
  LCOE/($·kWh−1) 0.4319 0.4401 0.4345 0.4196
System operation result
   PPV/MW 50576 50576 49821 50576
   PWP/MW 18555 18555 24596 18555
   PCSP/MW 77021 81280 58611 82003
   Ppurchase/MW 6531 2273 19656 1550
   Pab/MW 67358 31750 59014 32039
   QHT/MW 22109612 25757981 18107612 25487392
  CO2 emissions/(t·a−1) 1563 543.97 4704 370
Tab.10  Annual performance comparison of WP−PV−CSP (S-CO2) system with other systems
Fig.8  Effect of N Loop on LCOE and CO2 emissions of WP−PV−CSP (S-CO2) system.
Fig.9  Effect of (a) C CSP and (b) C PV on LCOE and CO2 emissions of WP−PV−CSP (S-CO2) system.
Fig.10  Effect of C TES on LCOE and CO2 emissions of WP−PV−CSP (S-CO2) system.
Fig.11  Effect of N WT on LCOE and CO2 emissions of WP−PV−CSP (S-CO2) system.
Fig.12  Effect of C EH on LCOE and CO2 emissions of WP−PV−CSP (S-CO2) system.
Abbreviations
CSP Concentrating solar power
EH Electric heater
HT Hot tank
PV Photovoltaic
S-CO2 Supercritical carbon dioxide
SF Solar field
TES Thermal energy storage
WP Wind power
WT Wind turbine
Variables
A Area/m2
B Coal consumption/t
C Capacity/MW
DNI Direct solar irradiation/(W·m−2)
GI Global irradiance/(W·m−2)
h Height/m
IC Investment costs/$
LCOE Levelized cost of electricity/($·kWh−1)
m Mass flow rate/(kg·s−1)
P Power/MW
Q Quantity of heat/MW
T Temperature/°C
v Wind speed/(m·s−1)
W Work/MW
η Efficiency
Subscripts
a Ambient
ab Abandoned
C Compressor
c Charge
d Discharge
HE Heat exchanger
INV Inverterin input
NOM Normal
O&M Operation and maintenance
out Output
ref Reference
s Standard
T Turbine
  
1 B V Ermolenko, G V Ermolenko, Y A Fetisova. et al.. Wind and solar PV technical potentials: Measurement methodology and assessments for Russia. Energy, 2017, 137: 1001–1012
https://doi.org/10.1016/j.energy.2017.02.050
2 S Mostafa Nosratabadi, R Hemmati, M Bornapour. et al.. Economic evaluation and energy/exergy analysis of PV/wind/PEMFC energy resources employment based on capacity, type of source and government incentive policies: Case study in Iran. Sustainable Energy Technologies and Assessments, 2021, 43: 100963
https://doi.org/10.1016/j.seta.2020.100963
3 C Xu, L Ge, H Feng. et al.. Review on status of wind power generation and composition and recycling of wind turbine blades. Thermal Power Generation, 2022, 51: 29–41
4 A Kamal, B Mohsine, A Abdelali. et al.. Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review. Renewable & Sustainable Energy Reviews, 2018, 93: 652–673
https://doi.org/10.1016/j.rser.2018.05.032
5 Y Zhang, H Sun, J Tan. et al.. Capacity configuration optimization of multi-energy system integrating wind turbine/photovoltaic/hydrogen/battery. Energy, 2022, 252: 124046
https://doi.org/10.1016/j.energy.2022.124046
6 Y Cao, M S Taslimi, S M Dastjerdi. et al.. Design, dynamic simulation, and optimal size selection of a hybrid solar/wind and battery-based system for off-grid energy supply. Renewable Energy, 2022, 187: 1082–1099
https://doi.org/10.1016/j.renene.2022.01.112
7 S Guo, Y He, H Pei. et al.. The multi-objective capacity optimization of wind-photovoltaic-thermal energy storage hybrid power system with electric heater. Solar Energy, 2020, 195: 138–149
https://doi.org/10.1016/j.solener.2019.11.063
8 L Pilotti, M Colombari, A F Castelli. et al.. Simultaneous design and operational optimization of hybrid CSP-PV plants. Applied Energy, 2023, 331: 120369
https://doi.org/10.1016/j.apenergy.2022.120369
9 K Riffelmann, G Weinrebe, M Balz. Hybrid CSP-PV plants with integrated thermal storage. AIP Conference Proceedings, 2022, 2445: 030020
https://doi.org/10.1063/5.0086610
10 Y Gedle, M Schmitz, H Gielen. et al.. Analysis of an integrated CSP-PV hybrid power plant. AIP Conference Proceedings, 2022, 2445: 030009
https://doi.org/10.1063/5.0086236
11 Y Ma, T Morozyuk, M Liu. et al.. Optimal integration of recompression supercritical CO2 Brayton cycle with main compression intercooling in solar power tower system based on exergoeconomic approach. Applied Energy, 2019, 242: 1134–1154
https://doi.org/10.1016/j.apenergy.2019.03.155
12 Y Liu, Y Wang, D Huang. Supercritical CO2 Brayton cycle: A state-of-the-art review. Energy 2019, 189: 115900
13 V Dostal, P Hejzlar, M J Driscoll. The supercritical carbon dioxide power cycle: Comparison to other advanced power cycles. Nuclear Technology, 2017, 154(3): 283–301
https://doi.org/10.13182/NT06-A3734
14 H Zhao, Q Deng, W Huang. et al.. Thermodynamic and economic analysis and multi-objective optimization of supercritical CO2 Brayton cycles. Journal of Engineering for Gas Turbines and Power: Transactions of the ASME, 2016, 138(8): 081602
https://doi.org/10.1115/1.4032666
15 T Xiao, C Liu, X Wang. et al.. Life cycle assessment of the solar thermal power plant integrated with air-cooled supercritical CO2 Brayton cycle. Renewable Energy, 2022, 182: 119–133
https://doi.org/10.1016/j.renene.2021.10.001
16 R Yuan, B Xu, J Wang. et al.. Analysis of supercritical carbon dioxide power generation system with trough solar collector as heat source. China Survey & Design, 2022, 3(S2): 34–37
17 J Yang, Z Yang, Y Duan. A review on integrated design and off-design operation of solar power tower system with S-CO2 Brayton cycle. Energy, 2022, 246: 123348
https://doi.org/10.1016/j.energy.2022.123348
18 J Yang, Z Yang, Y Duan. -Load matching and techno-economic analysis of CSP plant with S-CO2 Brayton cycle in CSP−PV−wind hybrid system. Energy, 2021, 223: 120016
https://doi.org/10.1016/j.energy.2021.120016
19 X Wang, X Li, Q Li. et al.. Performance of a solar thermal power plant with direct air-cooled supercritical carbon dioxide Brayton cycle under off-design conditions. Applied Energy, 2020, 261: 114359
https://doi.org/10.1016/j.apenergy.2019.114359
20 T Liu, Z Yang, Y Duan. et al.. Techno-economic assessment of hydrogen integrated into electrical/thermal energy storage in PV + wind system devoting to high reliability. Energy Conversion and Management, 2022, 268: 116067
https://doi.org/10.1016/j.enconman.2022.116067
21 J Yang, Z Yang, Y Duan. Novel design optimization of concentrated solar power plant with S-CO2 Brayton cycle based on annual off-design performance. Applied Thermal Engineering, 2021, 192: 116924
https://doi.org/10.1016/j.applthermaleng.2021.116924
22 H Liu, R Zhai, J Fu. et al.. Optimization study of thermal-storage PV-CSP integrated system based on GA-PSO algorithm. Solar Energy, 2019, 184: 391
https://doi.org/10.1016/j.solener.2019.04.017
23 M Chennaif, H Zahboune, M Elhafyani. et al.. Electric system cascade extended analysis for optimal sizing of an autonomous hybrid CSP/PV/wind system with battery energy storage system and thermal energy storage. Energy, 2021, 227: 120444
https://doi.org/10.1016/J.ENERGY.2021.120444
24 Q Tan, S Mei, M Dai. et al.. A multi-objective optimization dispatching and adaptability analysis model for wind-PV-thermal-coordinated operations considering comprehensive forecasting error distribution. Journal of Cleaner Production, 2020, 256: 120407
https://doi.org/10.1016/j.jclepro.2020.120407
25 Z Ding, H Hou, L Duan. et al.. Study on the capacity-operation collaborative optimization for multi-source complementary cogeneration system. Energy Conversion and Management, 2021, 250: 114920
https://doi.org/10.1016/j.enconman.2021.114920
26 M L E Mohammed Chennaif, Z Hassan. Electric system cascade analysis for optimal sizing of an autonomous photovoltaic water pumping system. Advances in Smart Technologies Applications and Case Studies, 2020, 684: 282–290
27 Chennaif M. Elhafyani M L, Zahboune H, et al. The impact of the tilt angle on the sizing of autonomous photovoltaic systems using electric system cascade analysis. In: Proceedings of the 2nd International Conference on Electronic Engineering and Renewable Energy Systems. Berlin: Springer, 2021, 767–776
28 R Zhai, H Liu, Y Chen. et al.. The daily and annual technical-economic analysis of the thermal storage PV-CSP system in two dispatch strategies. Energy Conversion and Management, 2017, 154: 56–67
https://doi.org/10.1016/j.enconman.2017.10.040
29 B K Das, M S H K Tushar, R Hassan. Techno-economic optimisation of stand-alone hybrid renewable energy systems for concurrently meeting electric and heating demand. Sustainable Cities and Society, 2021, 68: 102763
https://doi.org/10.1016/j.scs.2021.102763
30 Z Yang, R Kang, X Luo. et al.. Rigorous modelling and deterministic multi-objective optimization of a super-critical CO2 power system based on equation of state and non-linear programming. Energy Conversion and Management, 2019, 198: 111798
https://doi.org/10.1016/j.enconman.2019.111798
31 L Liu, R Zhai, Y Hu. Performance evaluation of wind-solar-hydrogen system for renewable energy generation and green hydrogen generation and storage: Energy, exergy, economic, and enviroeconomic. Energy, 2023, 276: 127386
https://doi.org/10.1016/J.ENERGY.2023.127386
32 L Liu, R Zhai, Y Hu. Multi-objective optimization with advanced exergy analysis of a wind-solar-hydrogen multi-energy supply system. Applied Energy, 2023, 348: 121512
https://doi.org/10.1016/j.apenergy.2023.121512
33 K Wang, M Li, J Guo. et al.. A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants. Applied Energy, 2018, 212: 109–121
https://doi.org/10.1016/j.apenergy.2017.12.031
34 J Yang, Z Yang, Y Duan. S-CO2 tower solar thermal power generation system with different installed capacity thermal and economic performance analysis. Acta Energiae Solaris Sinica, 2022, 43: 125–130
https://doi.org/10.19912/j.0254-0096tynxb.2021-0244
35 A S Alsagri, A Chiasson, M Gadalla. Viability assessment of a concentrated solar power tower with a supercritical CO2 Brayton cycle power plant. Journal of Solar Energy Engineering, 2019, 141(5): 051006
https://doi.org/10.1115/1.4043515
36 Y Liu, Y Wang, Y Zhang. et al.. Design and performance analysis of compressed CO2 energy storage of a solar power tower generation system based on the S-CO2 Brayton cycle. Energy Conversion and Management, 2021, 249: 114856
https://doi.org/10.1016/j.enconman.2021.114856
37 S Wu, C Zhou, E Doroodchi. et al.. Techno-economic analysis of an integrated liquid air and thermochemical energy storage system. Energy Conversion and Management, 2020, 205: 112341
https://doi.org/10.1016/j.enconman.2019.112341
38 I H A Mohamad, V K Ramachandaramurthya, P B Sanjeevikumar. et al.. NSGA-II and MOPSO based optimization for sizing of hybrid PV/wind/battery energy storage system. International Journal of Power Electronics and Drive Systems, 2019, 10(1): 463–478
39 Y Du, K Gao. Ecological security evaluation of marine ranching with AHP-entropy-based TOPSIS: A case study of Yantai, China. Marine Policy, 2020, 122: 104223
https://doi.org/10.1016/j.marpol.2020.104223
40 D Niu, G Wu, Z Ji. et al.. Evaluation of provincial carbon neutrality capacity of China based on combined weight and improved TOPSIS model. Sustainability, 2021, 13(5): 2777
https://doi.org/10.3390/su13052777
41 Z Luo, S Yang, N Xie. et al.. Multi-objective capacity optimization of a distributed energy system considering economy, environment and energy. Energy Conversion and Management, 2019, 200: 112081
https://doi.org/10.1016/j.enconman.2019.112081
42 EnergyPlus. Weather data—Hebei Zhangbei 533990 (CSWD). 2023, available at the website of EnergyPlus
43 X Wang, Q Zhu, Y Wang. Optimal allocation of wind-solar storage capacity of microgrid considering carbon emission reduction benefits. IOP Conference Series. Earth and Environmental Science, 2021, 804(3): 032015
https://doi.org/10.1088/1755-1315/804/3/032015
44 M Koleva, O J Guerra, J Eichman. et al.. Optimal design of solar-driven electrolytic hydrogen production systems within electricity markets. Journal of Power Sources, 2021, 483: 229183
https://doi.org/10.1016/j.jpowsour.2020.229183
45 X Chen, H Zhou, W Li. et al.. Multi-criteria assessment and optimization study on 5 kW PEMFC based residential CCHP system. Energy Conversion and Management, 2018, 160: 384–395
https://doi.org/10.1016/j.enconman.2018.01.050
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed