Electronic Supplementary Material

Fig. S1 Diagrams of hydrogen production performance of prepared samples.
(a) Time course hydrogen evolution of powder WO₃/CdS; (b) comparison of hydrogen production rate of different samples.

Fig. S2 SEM images of WCd-CT after reaction.

	Sacrificial agent	Light source	H ₂ production/	Ref.
Photocatalyst			$(\mu mol {\cdot} h^{-1} {\cdot} g^{-1})$	
CdS/WO ₃ /CT	Na ₂ S+Na ₂ SO ₃	300 W Xe lamp, AM	4320	This work
		1.5		
CdS/Pt/WO ₃	Lactic acid	500 W Xe lamp, $\lambda >$	2900	[1]
		400 nm		
CdS/CdWO ₄	Na ₂ S+Na ₂ SO ₃	300 W Xe lamp, AM	2400	[2]
		1.5		
CdS/ZnO	Na ₂ S+Na ₂ SO ₃	350 W Xe lamp	4134	[3]
WO3@MoS2/Cd	Lactic acid	300 W Xe lamp	8200	[4]
S				
CdS QDs/CeO ₂	Na ₂ S+Na ₂ SO ₃	300 W Xe lamp, $\lambda >$	101	[5]
		300 nm		
$CdS@ZnIn_2S_4\\$	/	300 W Xe lamp, $\lambda >$	540	[6]
		400 nm		
CdS/MnS	Na ₂ S+Na ₂ SO ₃	300 W Xe lamp, $\lambda >$	1595	[7]
		400 nm		
CdS/MoS ₂	Lactic acid	300 W Xe lamp	2107	[8]
QDs/ZnIn ₂ S ₄				

Table S1 Comparison of catalytic activities of different Z-scheme systems

References

- Zhang L J, Li S, Liu B K, et al. Highly efficient CdS/WO₃ photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic H₂ evolution under visible light. ACS Catalysis, 2014, 4(10): 3724–3729
- Cui H, Li B, Li Z, et al. Z-scheme based CdS/CdWO₄ heterojunction visible light photocatalyst for dye degradation and hydrogen evolution. Applied Surface Science, 2018, 455: 831–840
- Wang S, Zhu B, Liu M, et al. Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Applied Catalysis B: Environmental, 2019, 243: 19–26
- 4. Zhang L, Zhang H, Jiang C, et al. Z-scheme system of WO₃@MoS₂/CdS for photocatalytic evolution H₂: MoS₂ as the charge transfer mode switcher, electron-hole mediator and cocatalyst.

Applied Catalysis B: Environmental, 2019, 259: 118073

- Ma Y, Bian Y, Liu Y, et al. Construction of Z-scheme system for enhanced photocatalytic H₂ evolution based on CdS quantum dots/CeO₂ nanorods heterojunction. ACS Sustainable Chemistry and Engineering, 2018, 6(2): 2552–2562
- Zhang E, Zhu Q, Huang J, et al. Visually resolving the direct Z-scheme heterojunction in CdS@ZnIn₂S₄ hollow cubes for photocatalytic evolution of H₂ and H₂O₂ from pure water. Applied Catalysis B: Environmental, 2021, 293: 120213
- Li J, Liu X, Zhang J. Smart assembly of sulfide heterojunction photocatalysts with well-defined interfaces for direct Z-scheme water splitting under visible light. ChemSusChem, 2020, 13(11): 2996–3004
- Chen W, Yan R, Zhu J, et al. Highly efficient visible-light-driven photocatalytic hydrogen evolution by all-solid-state Z-scheme CdS/QDs/ZnIn₂S₄ architectures with MoS₂ quantum dots as solid-state electron mediator. Applied Surface Science, 2020, 504: 144406