Please wait a minute...
Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184

Frontiers of Information Technology & Electronic Engineering  2015, Vol. 16 Issue (7): 532-540   https://doi.org/10.1631/FITEE.1400368
  本期目录
A microblog recommendation algorithm based on social tagging and a temporal interest evolution model
Zhen-ming YUAN1,*(),Chi HUANG1(),Xiao-yan SUN1(),Xing-xing LI1(),Dong-rong XU2()
1. School of Information Science and Engineering, Hangzhou Normal University, Hangzhou 311121, China
2. MRI Unit & Epidemiology Division, Psychiatry Department, Columbia University & New York State Psychiatric Institute, New York 10032, USA
 全文: PDF(603 KB)  
Abstract

Personalized microblog recommendations face challenges of user cold-start problems and the interest evolution of topics. In this paper, we propose a collaborative filtering recommendation algorithm based on a temporal interest evolution model and social tag prediction. Three matrices are first prepared to model the relationship between users, tags, and microblogs. Then the scores of the tags for each microblog are optimized according to the interest evolution model of tags. In addition, to address the user cold-start problem, a social tag prediction algorithm based on community discovery and maximum tag voting is designed to extract candidate tags for users. Finally, the joint probability of a tag for each user is calculated by integrating the Bayes probability on the set of candidate tags, and the top n microblogs with the highest joint probabilities are recommended to the user. Experiments using datasets from the microblog of Sina Weibo showed that our algorithm achieved good recall and precision in terms of both overall and temporal performances. A questionnaire survey proved user satisfaction with recommendation results when the cold-start problem occurred.

Key wordsInterest evolution model    Recommender system    Collaborative filtering    Social tagging
收稿日期: 2014-10-30      出版日期: 2015-07-20
Corresponding Author(s): Zhen-ming YUAN   
 引用本文:   
. [J]. Frontiers of Information Technology & Electronic Engineering, 2015, 16(7): 532-540.
Zhen-ming YUAN,Chi HUANG,Xiao-yan SUN,Xing-xing LI,Dong-rong XU. A microblog recommendation algorithm based on social tagging and a temporal interest evolution model. Front. Inform. Technol. Electron. Eng, 2015, 16(7): 532-540.
 链接本文:  
https://academic.hep.com.cn/fitee/CN/10.1631/FITEE.1400368
https://academic.hep.com.cn/fitee/CN/Y2015/V16/I7/532
1 Armentano, M.G., Godoy, D., Amandi, A.A., 2013. Followee recommendation based on text analysis of microblogging activity. Inform. Syst., 38(8): 1116-1127. []
https://doi.org/10.1016/j.is.2013.05.009
2 Balabanovi?, M., Shoham, Y., 1997. Fab: content-based, collaborative recommendation. Commun. ACM, 40(3): 66-72. []
https://doi.org/10.1145/245108.245124
3 Breese, J.S., Heckerman, D., Kadie, C., 1998. Empirical analysis of predictive algorithms for collaborative filtering. Proc. 14th Conf. on Uncertainty in Artificial Intelligence, p.43-52.
4 Cataldi, M., di Caro, L., Schifanella, C., 2010. Emerging topic detection on Twitter based on temporal and social terms evaluation. Proc. 10th Int. Workshop on Multimedia Data Mining, Article 4. []
https://doi.org/10.1145/1814245.1814249
5 Chen, K., Chen, T., Zheng, G., , 2012. Collaborative personalized tweet recommendation. Proc. 35th Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, p.661-670. []
https://doi.org/10.1145/2348283.2348372
6 Chi, C., Liao, Q., Pan, Y., , 2011. Smarter social collaboration at IBM research. Proc. ACM Conf. on Computer Supported Cooperative Work, p.159-166. []
https://doi.org/10.1145/1958824.1958848
7 Deng, A.L., Zhu, Y.Y., Shi, B., 2003. A collaborative filtering recommendation algorithm based on item rating prediction. J. Softw., 14(9): 1621-1628 (in Chinese).
8 Ding, C., Li, T., Peng, W., 2006. Nonnegative matrix factorization and probabilistic latent semantic indexing: equivalence chi-square statistic, and a hybrid method. Proc. AAAI Conf. on Artificial Intelligence, p.342-347.
9 Ding, Y., Li, X., 2005. Time weight collaborative filtering. Proc. 14th ACM Int. Conf. on Information and Knowledge Management, p.485-492. []
https://doi.org/10.1145/1099554.1099689
10 Goldberg, D., Nichols, D., Oki, B.M., , 1992. Using collaborative filtering to weave an information tapestry. Commun. ACM, 35(12): 61-70. []
https://doi.org/10.1145/138859.138867
11 Guy, I., Zwerdling, N., Ronen, I., , 2010. Social media recommendation based on people and tags. Proc. 33rd Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, p.194-201. []
https://doi.org/10.1145/1835449.1835484
12 Jain, M., Rajyalakshmi, S., Tripathy, R.M., , 2013. Temporal analysis of user behavior and topic evolution on Twitter. Proc. 2nd Int. Conf. on Big Data Analytics, p.22-36. []
https://doi.org/10.1007/978-3-319-03689-2_2
13 Karypis, G., 2001. Evaluation of item-based top-N recommendation algorithms. Proc. 10th Int. Conf. on Information and Knowledge Management, p.247-254. []
https://doi.org/10.1145/502585.502627
14 Kim, B.M., Li, Q., Park, C.S., , 2006. A new approach for combining content-based and collaborative filters. J. Intell. Inform. Syst., 27(1): 79-91. []
https://doi.org/10.1007/s10844-006-8771-2
15 Koren, Y., 2008. Factorization meets the neighborhood: a multifaceted collaborative filtering model. Proc. 14th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.426-434. []
https://doi.org/10.1145/1401890.1401944
16 Koren, Y., 2010. Collaborative filtering with temporal dynamics. Commun. ACM, 53(4): 89-97. []
https://doi.org/10.1145/1721654.1721677
17 Meng, X.W., Hu, X., Wang, L.C., , 2013. Mobile recommender systems and their applications. J. Softw., 24(1): 91-108 (in Chinese).
18 Newman, M.E., 2004. Fast algorithm for detecting community structure in networks. Phys. Rev. E, 69: 066133. []
https://doi.org/10.1103/PhysRevE.69.066133
19 Pazzani, M.J., Billsus, D., 2007. Content-based recommendation systems. Adapt. Web, 4321: 325-341. []
https://doi.org/10.1007/978-3-540-72079-9_10
20 Sarwar, B., Karypis, G., Konstan, J., , 2001. Item-based collaborative filtering recommendation algorithms. Proc. 10th Int. Conf. on World Wide Web, p.285-295. []
https://doi.org/10.1145/371920.372071
21 Weigang, L., Sandes, E.F.O., Zheng, J., , 2014. Querying dynamic communities in online social networks. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(2): 81-90. []
https://doi.org/10.1631/jzus.C1300281
22 Wen, H., Fang, L., Guan, L., 2012. A hybrid approach for personalized recommendation of news on the Web. Expert Syst. Appl., 39(5): 5806-5814. []
https://doi.org/10.1016/j.eswa.2011.11.087
23 Wu, D., Yuan, Z., Yu, K., , 2012. Temporal social tagging based collaborative filtering recommender for digital library. Proc. 14th Int. Conf. on Asia-Pacific Digital Libraries, p.199-208. []
https://doi.org/10.1007/978-3-642-34752-8_26
24 Xing, C.X., Gao, F.R., Zhan, S.N., , 2007. A collaborative filtering recommendation algorithm incorporated with user interest change. J. Comput. Res. Devel., 44(2): 296-301 (in Chinese).
25 Yang, M.C., Rim, H.C., 2014. Identifying interesting Twitter contents using topical analysis. Expert Syst. Appl., 41(9): 4330-4336. []
https://doi.org/10.1016/j.eswa.2013.12.051
26 Yu, C., Xu, J., Du, X., 2006. Recommendation algorithm combining the user-based classified regression and the item-based filtering. Proc. 8th Int. Conf. on Electronic Commerce, p.574-578. []
https://doi.org/10.1145/1151454.1151463
27 Yuan, Z., Yu, T., Zhang, J., 2011. A social tagging based collaborative filtering recommendation algorithm for digital library. Proc. 13th Int. Conf. on Asia-Pacific Digital Libraries, p.192-201. []
https://doi.org/10.1007/978-3-642-24826-9_25
28 Zhou, K., Yang, S.H., Zha, H., 2011. Functional matrix factorizations for cold-start recommendation. Proc. 34th Int.
29 ACM SIGIR Conf. on Research and Development in Information Retrieval, p.315-324. []
https://doi.org/10.1145/2009916.2009961
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed