Please wait a minute...
Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184

Frontiers of Information Technology & Electronic Engineering  2015, Vol. 16 Issue (9): 732-743   https://doi.org/10.1631/FITEE.1400414
  本期目录
End-to-end delay analysis for networked systems
Jie SHEN1(),Wen-bo HE2,Xue LIU2,Zhi-bo WANG3,4,Zhi WANG1,*(),Jian-guo YAO5
1. Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
2. School of Computer Science, McGill University, Montreal H3A0E9, Canada
3. School of Computer, Wuhan University, Wuhan 430072, China
4. Su zhou Institute of Wuhan University, Suzhou 215000, China
5. School of Software, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(498 KB)  
Abstract

End-to-end delay measurement has been an essential element in the deployment of real-time services in networked systems. Traditional methods of delay measurement based on time domain analysis, however, are not efficient as the network scale and the complexity increase. We propose a novel theoretical framework to analyze the end-to-end delay distributions of networked systems from the frequency domain. We use a signal flow graph to model the delay distribution of a networked system and prove that the end-to-end delay distribution is indeed the inverse Laplace transform of the transfer function of the signal flow graph. Two efficient methods, Cramer’s rule-based method and the Mason gain rule-based method, are adopted to obtain the transfer function. By analyzing the time responses of the transfer function, we obtain the end-to-end delay distribution. Based on our framework, we propose an efficient method using the dominant poles of the transfer function to work out the bottleneck links of the network. Moreover, we use the framework to study the network protocol performance. Theoretical analysis and extensive evaluations show the effectiveness of the proposed approach.

Key wordsNetworked system    End-to-end    Delay distribution
收稿日期: 2014-12-04      出版日期: 2015-09-11
Corresponding Author(s): Zhi WANG   
 引用本文:   
. [J]. Frontiers of Information Technology & Electronic Engineering, 2015, 16(9): 732-743.
Jie SHEN,Wen-bo HE,Xue LIU,Zhi-bo WANG,Zhi WANG,Jian-guo YAO. End-to-end delay analysis for networked systems. Front. Inform. Technol. Electron. Eng, 2015, 16(9): 732-743.
 链接本文:  
https://academic.hep.com.cn/fitee/CN/10.1631/FITEE.1400414
https://academic.hep.com.cn/fitee/CN/Y2015/V16/I9/732
1 Abdelzaher, T.F., Prabh, S., Kiran, R., 2004. On real-time capacity limits of multihop wireless sensor networks. Proc. 25th IEEE Int. Real-Time Systems Symp., p.359―370. []
https://doi.org/10.1109/REAL.2004.37
2 Almeida, L., Fonseca, P., Fonseca, J.A., , 1999. Scheduling and clock synchronization in CAN-based distributed systems. Proc. Int. CAN Conf., p.1―9.
3 Bakshi, B.S., Krishna, P., Vaidya, N.H., , 1997. Improving performance of TCP over wireless networks. Proc. 17th Int. Conf. on Distributed Computing Systems, p.365―373. []
https://doi.org/10.1109/ICDCS.1997.598070
4 Balakrishnan, H., Padmanabhan, V.N., Seshan, S., , 1997. A comparison of mechanisms for improving TCP performance over wireless links. IEEE/ACM Trans. Netw., 5(6): 756―769. []
https://doi.org/10.1109/90.650137
5 Bauer, H., Scharbarg, J., Fraboul, C., 2010. Improving the worst-case delay analysis of an AFDX network using an optimized trajectory approach. IEEE Trans. Ind. Inform., 6(4): 521―533. []
https://doi.org/10.1109/TII.2010.2055877
6 Bisnik, N., Abouzeid, A.A., 2009. Queuing network models for delay analysis of multihop wireless ad hoc networks. Ad Hoc Netw., 7(1): 79―97. []
https://doi.org/10.1016/j.adhoc.2007.12.001
7 Bolot, J.C., 1993. End-to-end packet delay and loss behavior in the Internet. ACM SIGCOMM Comput. Commun. Rev., 23(4): 289―298. []
https://doi.org/10.1145/167954.166265
8 Boorstyn, R.R., Burchard, A., Liebeherr, J., , 2000. Statistical service assurances for traffic scheduling algorithms. IEEE J. Sel. Areas Commun., 18(12): 2651―2664. []
https://doi.org/10.1109/49.898747
9 Burchard, A., Liebeherr, J., Patek, S.D., 2006. A minplus calculus for end-to-end statistical service guarantees. IEEE Trans. Inform. Theory, 52(9): 4105―4114. []
https://doi.org/10.1109/TIT.2006.880019
10 Chakravorty, R., Katti, S., Crowcroft, J., , 2003. Flow aggregation for enhanced TCP over wide-area wireless. Proc. 22nd Annual Joint Conf. of the IEEE Computer and Communications, p.1754―1764. []
https://doi.org/10.1109/INFCOM.2003.1209198
11 Choe, J., Shroff, N.B., 1998. A central-limit-theorem-based approach for analyzing queue behavior in high-speed networks. IEEE/ACM Trans. Netw., 6(5): 659―671. []
https://doi.org/10.1109/90.731205
12 Cruz, R.L., 1991a. A calculus for network delay, part I: network elements in isolation. IEEE Trans. Inform. Theory, 37(1): 114―131.
13 Cruz, R.L., 1991b. A calculus for network delay, part II: network analysis. IEEE Trans. Inform. Theory, 37(1): 132―141.
14 D’Azzo, J., Houpis, C., 1995. Linear Control System Analysis and Design: Conventional and Modern. McGraw-Hill Higher Education, USA.
15 Despaux, F., Song, Y.Q., Lahmadi, A., 2012. Combining analytical and simulation approaches for estimating end-to-end delay in multi-hop wireless networks. Proc. IEEE 8th Int. Conf. on Distributed Computing in Sensor Systems, p.317―322. []
https://doi.org/10.1109/DCOSS.2012.31
16 El-Hajj, A., Kabalan, K.Y., 1995. A transfer function computational algorithm for linear control systems. IEEE Contr. Syst., 15(2): 114―118. []
https://doi.org/10.1109/37.375319
17 Exel, R., Bigler, T., Sauter, T., 2014. Asymmetry mitigation in IEEE 802.3 Ethernet for high-accuracy clock synchronization. IEEE Trans. Instrum. Meas., 63(3): 729―736. []
https://doi.org/10.1109/TIM.2013.2280489
18 Fidler, M., 2010. Survey of deterministic and stochastic service curve models in the network calculus. IEEE Commun. Surv. Tutor., 12(1): 59―86. []
https://doi.org/10.1109/SURV.2010.020110.00019
19 Gupta, G.R., Shroff, N., 2009. Delay analysis for multihop wireless networks. IEEE INFOCOM, p.2356―2364. []
https://doi.org/10.1109/INFCOM.2009.5062162
20 He, W., Liu, X., Zheng, L., , 2010. Reliability calculus: a theoretical framework to analyze communication reliability. Proc. IEEE 30th Int. Conf. on Distributed Computing Systems, p.159―168. []
https://doi.org/10.1109/ICDCS.2010.73
21 Heimlicher, S., Nuggehalli, P., May, M., 2007. End-to-end vs. hop-by-hop transport. SIGMETRICS Perform. Eval. Rev., 35(3): 59―60.
22 Koubaa, A., Alves, M., Tovar, E., 2006. Modeling and worst-case dimensioning of cluster-tree wireless sensor networks. Proc. 27th IEEE Int. Real-Time Systems Symp., p.412―421. []
https://doi.org/10.1109/RTSS.2006.29
23 Li, Y., Chen, C.S., Song, Y.Q., , 2009. Enhancing realtime delivery in wireless sensor networks with two-hop information. IEEE Trans. Ind. Inform., 5(2): 113―122. []
https://doi.org/10.1109/TII.2009.2017938
24 Paxson, V., 1997. End-to-end Internet packet dynamics. ACM SIGCOMM Comput. Commun. Rev., 27(4): 139―152. []
https://doi.org/10.1145/263109.263155
25 Qiu, J.Y., Knightly, E.W., 1999. Inter-class resource sharing using statistical service envelopes. Proc. 18th Annual Joint Conf. of the IEEE Computer and Communications Societies, p.1404―1411. []
https://doi.org/10.1109/INFCOM.1999.752160
26 Rao, L., Liu, X., Xie, L., , 2010. Minimizing electricity cost: optimization of distributed Internet data centers in a multi-electricity-market environment. Proc. IEEE INFOCOM, p.1―9. []
https://doi.org/10.1109/INFCOM.2010.5461933
27 Reisslein, M., Ross, K.W., Rajagopal, S., 2002. A framework for guaranteeing statistical QoS. IEEE/ACM Trans. Netw., 10(1): 27―42. []
https://doi.org/10.1109/90.986511
28 Schmitt, J.B., Zdarsky, F.A., Thiele, L., 2007. A comprehensive worst-case calculus for wireless sensor networks with in-network processing. Proc. 28th IEEE Int. Real-Time Systems Symp., p.193―202. []
https://doi.org/10.1109/RTSS.2007.17
29 Wang, Z., Liao, J., Cao, Q., , 2014. Achieving k-barrier coverage in hybrid directional sensor networks. IEEE Trans. Mob. Comput., 13(7): 1443―1455. []
https://doi.org/10.1109/TMC.2013.118
30 Xia, F., Vinel, A., Gao, R., , 2011. Evaluating IEEE 802.15.4 for cyber-physical systems. EURASIP J. Wirel. Commun. Netw., arXiv:1312.6837.
31 Xie, M., Haenggi, M., 2009. Towards an end-to-end delay analysis of wireless multihop networks. Ad Hoc Netw., 7(5): 849―861. []
https://doi.org/10.1016/j.adhoc.2008.04.010
32 Yao, J., Liu, X., Zhu, G., , 2013. NetSimplex: controller fault tolerance architecture in networked control systems. IEEE Trans. Ind. Inform., 9(1): 346―356. []
https://doi.org/10.1109/TII.2012.2219060
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed