Please wait a minute...
Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184

Frontiers of Information Technology & Electronic Engineering  2015, Vol. 16 Issue (7): 594-606   https://doi.org/10.1631/FITEE.14a0260
  本期目录
Building a dense surface map incrementally from semi-dense point cloud andRGBimages
Qian-shan LI1,3(),Rong XIONG1,3,*(),Shoudong HUANG2,3(),Yi-ming HUANG4()
1. State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
2. Faculty of Engineering and Information Technology, The University of Technology, Sydney, NSW 2007, Australia
3. ZJU-UTS Joint Center on Robotics, Zhejiang University, Hangzhou 310027, China
4. Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1900 KB)  
Abstract

Building and using maps is a fundamental issue for bionic robots in field applications. A dense surface map, which offers rich visual and geometric information, is an ideal representation of the environment for indoor/outdoor localization, navigation, and recognition tasks of these robots. Since most bionic robots can use only small light-weight laser scanners and cameras to acquire semi-dense point cloud and RGB images, we propose a method to generate a consistent and dense surface map from this kind of semi-dense point cloud and RGB images. The method contains two main steps: (1) generate a dense surface for every single scan of point cloud and its corresponding image(s) and (2) incrementally fuse the dense surface of a new scan into the whole map. In step (1) edge-aware resampling is realized by segmenting the scan of a point cloud in advance and resampling each sub-cloud separately. Noise within the scan is reduced and a dense surface is generated. In step (2) the average surface is estimated probabilistically and the non-coincidence of different scans is eliminated. Experiments demonstrate that our method works well in both indoor and outdoor semi-structured environments where there are regularly shaped objects.

Key wordsBionic robot    Robotic mapping    Surface fusion
收稿日期: 2014-09-03      出版日期: 2015-07-20
Corresponding Author(s): Rong XIONG   
 引用本文:   
. [J]. Frontiers of Information Technology & Electronic Engineering, 2015, 16(7): 594-606.
Qian-shan LI,Rong XIONG,Shoudong HUANG,Yi-ming HUANG. Building a dense surface map incrementally from semi-dense point cloud andRGBimages. Front. Inform. Technol. Electron. Eng, 2015, 16(7): 594-606.
 链接本文:  
https://academic.hep.com.cn/fitee/CN/10.1631/FITEE.14a0260
https://academic.hep.com.cn/fitee/CN/Y2015/V16/I7/594
1 Amenta, N., Bern, M., 1999. Surface reconstruction by Voronoi filtering. Discr. Comput. Geom., 22(4): 481-504. []
https://doi.org/10.1007/PL00009475
2 Amenta, N., Choi, S., Kolluri, R.K., 2001. The power crust. Proc. 6th ACM Symp. on Solid Modeling and Applications, p.249-266. []
https://doi.org/10.1145/376957.376986
3 Bajaj, C.L., Bernardini, F., Xu, G., 1997. Reconstructing surfaces and functions on surfaces from unorganized three-dimensional data. Algorithmica, 19(1-2): 243-261. []
https://doi.org/10.1007/PL00014418
4 Básaca-Preciado, L.C., Sergiyenko, O.Y., Rodríguez-Quinonez, J.C., , 2014. Optical 3D laser measurement system for navigation of autonomous mobile robot. Opt. Lasers Eng., 54: 159-169. []
https://doi.org/10.1016/j.optlaseng.2013.08.005
5 Cole, D.M., Newman, P.M., 2006. Using laser range data for 3D SLAM in outdoor environments. Proc. IEEE Int. Conf. on Robotics and Automation, p.1556-1563. []
https://doi.org/10.1109/ROBOT.2006.1641929
6 Crossno, P., Angel, E., 1999. Spiraling edge: fast surface reconstruction from partially organized sample points. Proc. Conf. on Visualization, p.317-324.
7 Dey, T.K., Wang, L., 2013. Voronoi-based feature curves extraction for sampled singular surfaces. Comput. Graph., 37(6): 659-668. []
https://doi.org/10.1016/j.cag.2013.05.014
8 Dey, T.K., Giesen, J., Hudson, J., 2001. Delaunay based shape reconstruction from large data. Proc. IEEE Symp. on Parallel and Large-Data Visualization and Graphics, p.19-146. []
https://doi.org/10.1109/PVGS.2001.964399
9 Dey, T.K., Dyer, R., Wang, L., 2011. Localized Cocone surface reconstruction. Comput. Graph., 35(3): 483-491. []
https://doi.org/10.1016/j.cag.2011.03.014
10 Dey, T.K., Ge, X., Que, Q., , 2012. Feature-preserving reconstruction of singular surfaces. Comput. Graph. Forum, 31(5): 1787-1796. []
https://doi.org/10.1111/j.1467-8659.2012.03183.x
11 Felzenszwalb, P.F., Huttenlocher, D.P., 2004. Efficient graphbased image segmentation. Int. J. Comput. Vis., 59(2): 167-181. []
https://doi.org/10.1023/B:VISI.0000022288.19776.77
12 Gopi, M., Krishnan, S., 2002. A fast and efficient projection-based approach for surface reconstruction. Proc. Brazilian Symp. on Computer Graphics and Image Processing, p.179-186. []
https://doi.org/10.1109/SIBGRA.2002.1167141
13 Holz, D., Behnke, S., 2013. Fast range image segmentation and smoothing using approximate surface reconstruction and region growing. Proc. 12th Int. Conf. on Intelligent Autonomous Systems, p.61-73. []
https://doi.org/10.1007/978-3-642-33932-5_7
14 Huang, H., Wu, S., Gong, M., , 2013. Edge-aware point set resampling. ACM Trans. Graph., 32(1): Article 9. []
https://doi.org/10.1145/2421636.2421645
15 Lin, J., Jin, X., Wang, C., , 2008. Mesh composition on models with arbitrary boundary topology. IEEE Trans. Visual. Comput. Graph., 14(3): 653-665. []
https://doi.org/10.1109/TVCG.2007.70632
16 Lopez, M.R., Sergiyenko, O.Y., Tyrsa, V.V., , 2010. Optoelectronic method for structural health monitoring. Struct. Health Monit., 9(2): 105-120. []
https://doi.org/10.1177/1475921709340975
17 Lou, R., Pernot, J.P., Mikchevitch, A., , 2010. Merging enriched finite element triangle meshes for fast prototyping of alternate solutions in the context of industrial maintenance. Comput.-Aid. Des., 42(8): 670-681. []
https://doi.org/10.1016/j.cad.2010.01.002
18 Marton, Z.C., Rusu, R.B., Beetz, M., 2009. On fast surface reconstruction methods for large and noisy point clouds. Proc. IEEE Int. Conf. on Robotics and Automation, p.3218-3223. []
https://doi.org/10.1109/ROBOT.2009.5152628
19 Maurelli, F., Droeschel, D., Wisspeintner, T., , 2009. A 3D laser scanner system for autonomous vehicle navigation. Proc. Int. Conf. on Advanced Robotics, p.1-6.
20 Newcombe, R.A., Izadi, S., Hilliges, O., , 2011. Kinect-Fusion: real-time dense surface mapping and tracking. Proc. 10th IEEE Int. Symp. on Mixed and Augmented Reality, p.127-136. []
https://doi.org/10.1109/ISMAR.2011.6092378
21 Nüchter, A., Lingemann, K., Hertzberg, J., , 2007. 6D SLAM—3D mapping outdoor environments. J. Field Robot., 24(8-9): 699-722. []
https://doi.org/10.1002/rob.20209
22 Pandey, G., McBride, J., Savarese, S., , 2010. Extrinsic calibration of a 3D laser scanner and an omnidirectional camera. Proc. 7th IFAC Symp. on Intelligent Autonomous Vehicles.
23 Rusu, R.B., Marton, Z.C., Blodow, N., , 2008. Towards 3D point cloud based object maps for household environments. Robot. Auton. Syst., 56(11): 927-941. []
https://doi.org/10.1016/j.robot.2008.08.005
24 Schadler, M., Stückler, J., Behnke, S., , 2014. Rough terrain 3D mapping and navigation using a continuously rotating 2D laser scanner. Künstl. Intell., 28(2): 93-99. []
https://doi.org/10.1007/s13218-014-0301-8
25 Sheehan, M., Harrison, A., Newman, P., 2012. Selfcalibration for a 3D laser. Int. J. Robot. Res., 31(5): 675-687. []
https://doi.org/10.1177/0278364911429475
26 Wang, Y.B., Sheng, Y.H., Lv, G.N., , 2007. A Delaunaybased surface reconstrution algorithm for unorganized sampling points. J. Image Graph., 12(9): 1537-1543 (in Chinese).
27 Whelan, T., Kaess, M., Fallon, M., , 2012. Kintinuous: Spatially Extended KinectFusion. Technical Report No. MIT-CSAIL-TR-2012-020. Massachusetts Institute of Technology, USA.
28 Wulf, O., Wagner, B., 2003. Fast 3D scanning methods for laser measurement systems. Proc. Int. Conf. on Control Systems and Computer Science, p.2-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed