Please wait a minute...
Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184

Frontiers of Information Technology & Electronic Engineering  2017, Vol. 18 Issue (3): 434-444   https://doi.org/10.1631/FITEE.1601683
  本期目录
采用线性和非线性拟合方法进行指数模型参数估计
杨萍1(),吴超鹏2,郭乙陆2,刘洪波2,黄慧2(),王杭州2,詹舒越2,陶邦一3,穆全全4,王强1,宋宏2
1. 杭州电子科技大学数字媒体与艺术设计学院
2. 浙江大学海洋学院
3. 国家海洋局第二海洋研究所卫星海洋环境动力学国家重点实验室
4. 中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室
Parameter estimation in exponential models by linear and nonlinear fitting methods
Ping YANG1(),Chao-peng WU2,Yi-lu GUO2,Hong-bo LIU2,Hui HUANG2(),Hang-zhou WANG2,Shu-yue ZHAN2,Bang-yi TAO3,Quan-quan MU4,Qiang WANG1,Hong SONG2
1. School of Digital Media & Design, Hangzhou Dianzi University, Hangzhou 310018, China
2. Ocean College, Zhejiang University, Zhoushan 316021, China
3. State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China
4. State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
 全文: PDF(641 KB)  
摘要:

本文探讨了通过线性和非线性拟合方法估计指数模型中的未知参数。基于多元函数极值定理及泰勒级数展开,从理论上证明了:在实验测量数据中包含噪声的情况下,通过线性拟合方法所得到的参数估计值并不能保证指数模型的残差平方和达到最小。通过数值仿真对线性和非线性拟合方法的结果进行了对比,仿真结果显示:线性方法只能获得未知参数的次优估计,但非线性方法给出更准确的结果。利用水下图像和成像距离数据对水体光谱衰减系数进行了估计,结果证实非线性拟合方法能够对参数估计准确度有明显的提升。

Abstract

Estimation of unknown parameters in exponential models by linear and nonlinear fitting methods is discussed. Based on the extreme value theorem and Taylor series expansion, it is proved theoretically that the parameters estimated by the linear fitting method alone cannot minimize the sum of the squared residual errors in the measurement data when measurement noise is involved in the data. Numerical simulation is performed to compare the performance of the linear and nonlinear fitting methods. Simulation results show that the linear method can obtain only a suboptimal estimate of the unknown parameters and that the nonlinear method gives more accurate results. Application of the fitting methods is demonstrated where the water spectral attenuation coefficient is estimated from underwater images and imaging distances, which supports the improvement in the accuracy of parameter estimation by the nonlinear fitting method.

Key wordsExponential model    Parameter estimation    Linear least squares    Nonlinear fitting
收稿日期: 2016-11-03      出版日期: 2017-04-06
通讯作者: 杨萍,黄慧     E-mail: yangping@hdu.edu.cn;huih@zju.edu.cn
Corresponding Author(s): Ping YANG,Hui HUANG   
 引用本文:   
杨萍,吴超鹏,郭乙陆,刘洪波,黄慧,王杭州,詹舒越,陶邦一,穆全全,王强,宋宏. 采用线性和非线性拟合方法进行指数模型参数估计[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 434-444.
Ping YANG,Chao-peng WU,Yi-lu GUO,Hong-bo LIU,Hui HUANG,Hang-zhou WANG,Shu-yue ZHAN,Bang-yi TAO,Quan-quan MU,Qiang WANG,Hong SONG. Parameter estimation in exponential models by linear and nonlinear fitting methods. Front. Inform. Technol. Electron. Eng, 2017, 18(3): 434-444.
 链接本文:  
https://academic.hep.com.cn/fitee/CN/10.1631/FITEE.1601683
https://academic.hep.com.cn/fitee/CN/Y2017/V18/I3/434
1 Adi, N.S., 2015. Characterisation of the light environment and biophysical parameters of seagrass using remote sensing. PhD Thesis, The University of Queensland, Brisbane, Australia, p.23–38.
2 Åhlén, J., Bengtsson, E., Sundgren, D., 2006. Evaluation of underwater spectral data for color correction applications. Proc. 5th WSEAS Int. Conf. on Circuits, Systems, Electronics, Control & Signal Processing, p.321–326.
3 Bardaji, R., Sánchez, A.M., Simon, C., et al, 2016. Estimating the underwater diffuse attenuation coefficient with a low-cost instrument: the KdUINO DIY buoy. Sensors, 16(3):373–387.
4 Floudas, C.A., Pardalos, P.M., 2001. Encyclopedia of Optimization. Kluwer Academic Publishers, Norwell, p.1129–1134.
5 Guo, Y.L., Song, H., Liu, H.B., et al, 2016. Model-based restoration of underwater spectral images captured with narrowband filters. Opt. Expr., 24(12):13101–13120.
6 Hartley, H.O., 1961. The modified Gauss-Newton method for the fitting of nonlinear regression functions by least squares. Technometrics, 3(2):269–280.
7 He, Q.R., Li, L.P., 2015. Algorithm study on reducing frequency measurement variance of acousto-optic spectrum analyzer. Infrar. Laser Eng., 44(5):1564–1568 (in Chinese).
8 Kaeli, J.W., Singh, H., Murphy, C., et al, 2011. Improving color correction for underwater image surveys. Proc. IEEE/MTS Oceans, p.805–810.
9 Lai, J.S., Yang, B., Lin, D.M., et al, 2013. The allometry of coarse root biomass: log-transformed linear regression or nonlinear regression. PLoS One, 8(10):e77007.
10 Levenberg, K., 1944. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math., 2:164–168.
11 Lieb, S.G., 1997. Simplex method of nonlinear least-squares: a logical complementary method to linear least-square analysis of data. J. Chem. Educat., 74(8):1008–1011.
12 Liu, C.Q., Ma, J.S., Shao, X.L., et al, 2013. Detection of Gaussian beam distribution of light intensity. Opt. Instrum., 35(6):69–73 (in Chinese).
13 Marquardt, D.W., 1963. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math., 11(2):431–441.
14 Mascaro, J., Litton, C.M., Hughes, R.F., et al, 2011. Minimizing bias in biomass allometry: model selection and log-transformation of data. Biotropica, 43(6):649–653.
15 Novković, D., Nadderd, L., Kandić, A., et al, 2006. Testing the exponential decay law of gold 198Au. Nucl. Instrum. Methods Phys. Res. Sect. A, 566(2):477–480.
16 Peterson, P., Baker, E., McGaw, B., 2010. International Encyclopedia of Education. Elsevier Science, Oxford, p.339–346.
17 Schechner, Y.Y., Karpel, N., 2004. Clear underwater vision. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.536–543.
18 Semkow, T.M., 2007. Exponential decay law and nuclear statistics. In: Semkow, T.M., Pommé, S., Jerome, S., et al (Eds.), Applied Modeling and Computations in Nuclear Science. ACS, Washington DC.
19 Simon, A., Shanmugam, P., 2016. Estimation of the spectral diffuse attenuation coefficient of downwelling irradiance in inland and coastal waters from hyperspectral remote sensing data: validation with experimental data. Int. J. Appl. Earth Observ. Geoinform., 49:117–125.
20 Swinehart, D.F., 1962. The Beer-Lambert law. J. Chem. Educat., 39(7):333–335.
21 Vickery, P.J., 2005. Simple empirical models for estimating the increase in the central pressure of tropical cyclones after landfall along the coastline of the United States. J. Appl. Meteorol., 44:1807–1826.
22 Wei, J.W., Lee, Z.P., 2013. Model of the attenuation coefficient of daily photosynthetically available radiation in the upper ocean. Methods Oceanogr., 8:56–74.
23 Xiao, X., White, E.P., Hooten, M.B., et al, 2011. On the use of log-transformation vs. nonlinear regression for analyzing biological power laws. Ecology, 92(10):1887–1894.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed