Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

邮发代号 80-964

2019 Impact Factor: 1.03

Frontiers of Mathematics in China  0, Vol. Issue (): 3-18   https://doi.org/10.1007/s11464-012-0264-8
  RESEARCH ARTICLE 本期目录
Nonnegative tensor factorizations using an alternating direction method
Nonnegative tensor factorizations using an alternating direction method
Xingju CAI1, Yannan CHEN1,2, Deren HAN1()
1. School of Mathematical Sciences, Key Laboratory for NSLSCS of Jiangsu Province, Nanjing Normal University, Nanjing 210023, China; 2. College of Science, Nanjing Forestry University, Nanjing 210037, China
 全文: PDF(752 KB)   HTML
Abstract

The nonnegative tensor (matrix) factorization finds more and more applications in various disciplines including machine learning, data mining, and blind source separation, etc. In computation, the optimization problem involved is solved by alternatively minimizing one factor while the others are fixed. To solve the subproblem efficiently, we first exploit a variable regularization term which makes the subproblem far from ill-condition. Second, an augmented Lagrangian alternating direction method is employed to solve this convex and well-conditioned regularized subproblem, and two accelerating skills are also implemented. Some preliminary numerical experiments are performed to show the improvements of the new method.

Key wordsNonnegative matrix factorization    nonnegative tensor factorization    nonnegative least squares    alternating direction method
收稿日期: 2012-02-07      出版日期: 2013-02-01
Corresponding Author(s): HAN Deren,Email:handeren@njnu.edu.cn   
 引用本文:   
. Nonnegative tensor factorizations using an alternating direction method[J]. Frontiers of Mathematics in China, 0, (): 3-18.
Xingju CAI, Yannan CHEN, Deren HAN. Nonnegative tensor factorizations using an alternating direction method. Front Math Chin, 0, (): 3-18.
 链接本文:  
https://academic.hep.com.cn/fmc/CN/10.1007/s11464-012-0264-8
https://academic.hep.com.cn/fmc/CN/Y0/V/I/3
1 Acar E, Dunlavy D M, Kolda T G. A scalable optimization approach for fitting canonical tensor decompositions. J Chemometrics , 2011, 25(2): 67–86
doi: 10.1002/cem.1335
2 Bader B W, Kolda T G. Algorithm 862: MATLAB tensor classes for fast algorithm prototyping. ACM Trans Math Software , 2006, 32(4): 635-653
doi: 10.1145/1186785.1186794
3 Bader B W, Kolda T G. Efficient MATLAB computations with sparse and factored tensors. SIAM J Sci Comput , 2007, 30(1): 205-231
doi: 10.1137/060676489
4 Benetos E, Kotropoulos C. Non-negative tensor factorization applied to music genre classification. IEEE Trans Audio, Speech, Language Processing , 2010, 18(8): 1955-1967
doi: 10.1109/TASL.2010.2040784
5 Benthem M H,Van Keenan M R. Fast algorithm for the solution of large-scale nonnegativity- constrained least squares problems. J Chemometrics , 2004, 18(10): 441-450
doi: 10.1002/cem.889
6 Berry M W, Browne M. Email surveillance using non-negative matrix factorization. Comput Math Organization Theory , 2005, 11(3): 249-264
doi: 10.1007/s10588-005-5380-5
7 Berry M W, Browne M, Langville A N, Pauca V P, Plemmons R J. Algorithms and applications for approximate nonnegative matrix factorization. Comput Statist Data Anal , 2007, 52(1): 155-173
doi: 10.1016/j.csda.2006.11.006
8 Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. In: Jordan M, ed. Foundations and Trends in Machine Learning , Vol 3. 2011, 1-122 . http://www.stanford.edu/˜boyd/papers/admm distr stats.html
9 Bro R, Jong S De. A fast non-negativity-constrained least squares algorithm. J Chemometrics , 1997, 11(5): 393-401
doi: 10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L
10 Chen Y, Wang X, Shi C, Lua E K, Fu X M, Deng B X, Li X. Phoenix: a weight-based network coordinate system using matrix factorization. IEEE Trans Network Service Management , 2011, 8(4): 334-347
doi: 10.1109/TNSM.2011.110911.100079
11 Cichocki A, Zdunek R, Phan A H, Amari S. Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. New York: Wiley, 2009
12 Georghiades A S, Belhumeur P N, Kriegman D J. From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Machine Intelligence , 2001, 23(6): 643-660
doi: 10.1109/34.927464
13 Han D R, Xu W, Yang H. An operator splitting method for variational inequalities with partially unknown mappings. Numer Math , 2008, 111(2): 207-237
doi: 10.1007/s00211-008-0181-7
14 He B S, Liao L Z, Han D R, Yang H. A new inexact alternating directions method for monotone variational inequalities. Math Program , 2002, 92(1): 103-118
doi: 10.1007/s101070100280
15 He B S, Yang H. Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities. Oper Res Lett , 1998, 23(3-5): 151-161
doi: 10.1016/S0167-6377(98)00044-3
16 He B S, Yang H, Wang S L. Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities. J Optim Theory Appl , 2000, 106(2): 337-356
doi: 10.1023/A:1004603514434
17 Kim H, Park H. Sparse non-negative matrix factorizations via alternating nonnegativity- constrained least squares for microarray data analysis. Bioinformatics , 2007, 23(12): 1495-1502
doi: 10.1093/bioinformatics/btm134
18 Kim H, Park H. Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method. SIAM J Matrix Anal Appl , 2008, 30(2): 713-730
doi: 10.1137/07069239X
19 Kim J, Park H. Fast nonnegative matrix factorization: an active-set-like method and comparisons. SIAM J Sci Comput , 2011, 33(6): -3281
doi: 10.1137/110821172
20 Lawson C L, Hanson R J. Solving Least Squares Problems. Philadelphia: SIAM , 1995
doi: 10.1137/1.9781611971217
21 Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization. Nature , 1999, 401: 788-791
doi: 10.1038/44565
22 Lee D D, Seung H S. Algorithms for non-negative matrix factorization. Adv Neural Inf Process Syst , 2001, 13: 556-562
23 Lee K-C, Ho J, Kriegman D J. Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Machine Intelligence , 2005, 27(5): 684-698
doi: 10.1109/TPAMI.2005.92
24 Lim L-H, Comon P. Nonnegative approximations of nonnegative tensors. J Chemometrics , 2009, 23(7-8): 432-441
doi: 10.1002/cem.1244
25 Lin C-J. Projected gradient methods for non-negative matrix factorization. Neural Comput , 2007, 19(10): 2756-2779. http://www.csie.ntu.edu.tw/˜cjlin/nmf/index.html
doi: 10.1162/neco.2007.19.10.2756
26 Mao Y, Saul L K, Smith J M. IDES: an internet distance estimation service for large networks. IEEE J Selected Areas Communications , 2006, 24(12): 2273-2284
doi: 10.1109/JSAC.2006.884026
27 Nielsen F A, Balslev D, Hansen L K. Mining the posterior cingulate: segregation between memory and pain components. NeuroImage , 2005, 27(3): 520-532
doi: 10.1016/j.neuroimage.2005.04.034
28 Paatero P, Tapper U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmatrics , 1994, 5(2): 111-126
doi: 10.1002/env.3170050203
29 Schmidt M N, Mohamed S. Probabilistic non-negative tensor factorisation using markov chain monte carlo. In: European Signal Processing Conference. 2009, 1918-1922
30 Shashua A, Hazan T. Non-negative tensor factorization with applications to statistics and computer vision. In: Proceedings of the 22nd International Conference on Machine Learning (ICML’05) . 2005, 792-799
doi: 10.1145/1102351.1102451
31 Smilde A, Bro R, Geladi P. Multi-way Analysis: Applications in the Chemical Sciences. New York: John Wiley & Sons, 2004
doi: 10.1002/0470012110
32 Vavasis S A. On the complexity of nonnegative matrix factorization. SIAM J Optim , 2009, 20(3): 1364-1377
doi: 10.1137/070709967
33 Zhang Q, Wang H, Plemmons R, Pauca V P. Spectral unmixing using nonnegative tensor factorization. In: ACM Southeast Regional Conference. New York: ACM, 2007, 531-532
34 Zhang Y. Theory of compressive sensing via l1-minimizatIon: a non-RIP analysis and extensions. Technical Report TR08-11, revised. Department of Computational and Applied Mathematics, Rice University, Houston, Texas . 2008. http://www.caam.rice.edu/˜zhang/reports/tr0811 revised.pdf
35 Zhang Y. An alternating direction algorithm for nonnegative matrix factorization. Techxnical Report TR10-03. Department of Computational and Applied Mathematics, Rice University, Houston, Texas . 2010. http://www.caam.rice.edu/˜zhang/reports/tr1003.pdf
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed