Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

邮发代号 80-964

2019 Impact Factor: 1.03

Frontiers of Mathematics in China  2017, Vol. 12 Issue (4): 843-858   https://doi.org/10.1007/s11464-016-0603-2
  本期目录
Discrete α-Yamabe flow in 3-dimension
Huabin GE1, Shiguang MA2()
1. Institute of Mathematics, Beijing Jiaotong University, Beijing 100044, China
2. Department of Mathematics and LPMC, Nankai University, Tianjin 300071, China
 全文: PDF(190 KB)  
Abstract

We generalize the discrete Yamabe flow to αorder. This Yamabe flow deforms the α-order curvature to a constant. Using this new flow, we manage to find discrete α-quasi-Einstein metrics on the triangulations of S 3.

Key wordsα-Yamabe flow    α-quasi Einstein metric    ball packing metric
收稿日期: 2016-07-10      出版日期: 2017-07-06
Corresponding Author(s): Shiguang MA   
 引用本文:   
. [J]. Frontiers of Mathematics in China, 2017, 12(4): 843-858.
Huabin GE, Shiguang MA. Discrete α-Yamabe flow in 3-dimension. Front. Math. China, 2017, 12(4): 843-858.
 链接本文:  
https://academic.hep.com.cn/fmc/CN/10.1007/s11464-016-0603-2
https://academic.hep.com.cn/fmc/CN/Y2017/V12/I4/843
1 CooperD, RivinI. Combinatorial scalar curvature and rigidity of ball packings. Math Res Lett, 1996, 3: 51–60
https://doi.org/10.4310/MRL.1996.v3.n1.a5
2 GeH, JiangW. On the deformation of discrete conformal factors on surfaces. Calc Var Partial Differential Equations (to appear)
https://doi.org/10.1007/s00526-016-1070-z
3 GeH, XuX. Discrete quasi-Einstein metrics and combinatorial curvature flows in 3-dimension. Adv Math, 2014, 267: 470–497
https://doi.org/10.1016/j.aim.2014.09.011
4 GeH, XuX. A combinatorial Yamabe problem on two and three dimensional manifolds. arXiv: 1504.05814 [math.DG]
5 GeH, XuX. 2-dimensional combinatorial Calabi flow in hyperbolic background geometry. Differential Geom Appl, 2016, 47: 86–98
https://doi.org/10.1016/j.difgeo.2016.03.011
6 GeH, XuX. A discrete Ricci flow on surfaces with hyperbolic background geometry. Int Math Res Not IMRN,
https://doi.org/10.1093/imrn/rnw142
7 GeH, XuX. α-curvatures and α-flows on low dimensional triangulated manifolds. Calc Var Partial Differential Equations, 2016, 55(1): Art 12 (16 pp)
8 GlickensteinD. A combinatorial Yamabe flow in three dimensions. Topology, 2005, 44(4): 791–808
https://doi.org/10.1016/j.top.2005.02.001
9 GlickensteinD. A maximum principle for combinatorial Yamabe flow. Topology, 2005, 44(4): 809–825
https://doi.org/10.1016/j.top.2005.02.002
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed