|
|
|
Perelman’s λ-functional and Seiberg-Witten equations |
| FANG Fuquan, ZHANG Yuguang |
| Department of Mathematics, Capital Normal University, Beijing 100037, China; |
|
|
|
|
Abstract In this paper, we estimate the supremum of Perelman s λ-functional λM(g) on Riemannian 4-manifold (M,g) by using the Seiberg-Witten equations. Among other things, we prove that, for a compact Kähler-Einstein complex surface (M,J, g0) with negative scalar curvature, (i) if g1 is a Riemannian metric on M with λM(g1) = λM(g0), then Volg1(M) "e Volg0 (M). Moreover, the equality holds if and only if g1 is also a Kãhler-Einstein metric with negative scalar curvature. (ii) If {gt}, t " [-1, 1], is a family of Einstein metrics on M with initial metric g0, then gt is a Kãhler-Einstein metric with negative scalar curvature.
|
|
Issue Date: 05 June 2007
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|