Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2008, Vol. 3 Issue (2) : 151-165    https://doi.org/10.1007/s11464-008-0011-3
Cantor families of periodic solutions for completely resonant wave equations
BERTI Massimiliano1, BOLLE Philippe2
1.Dipartimento di Matematica e Applicazioni R. Caccioppoli, Universite Federico II di Napoli, Via Cintia; 2.Laboratoire d'Analyse non lineaire et Geometrie, Universite d'Avignon;
 Download: PDF(189 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present recent existence results of Cantor families of small amplitude periodic solutions for completely resonant nonlinear wave equations. The proofs rely on the Nash-Moser implicit function theory and variational methods.
Issue Date: 05 June 2008
 Cite this article:   
BERTI Massimiliano,BOLLE Philippe. Cantor families of periodic solutions for completely resonant wave equations[J]. Front. Math. China, 2008, 3(2): 151-165.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-008-0011-3
https://academic.hep.com.cn/fmc/EN/Y2008/V3/I2/151
1 Ambrosetti A Rabinowitz P Dual variational methods incritical point theory and applicationsJFunc Anal 1973 14349381.
doi:10.1016/0022‐1236(73)90051‐7
2 Baldi P Berti M Periodic solutions of waveequations for asymptotically full measure sets of frequenciesRend Mat Acc Naz Lincei 2006 17257277
3 Bambusi D Paleari S Families of periodic solutionsof resonant PDEsJ Nonlinear Sci 2001 116987.
doi:10.1007/s003320010010
4 Berti M Bolle P Periodic solutions of nonlinearwave equations with general nonlinearitiesComm Math Phys 2003 243315328.
doi:10.1007/s00220‐003‐0972‐8
5 Berti M Bolle P Multiplicity of periodic solutionsof nonlinear wave equationsNonlinear Anal 2004 5610111046.
doi:10.1016/j.na.2003.11.001
6 Berti M Bolle P Cantor families of periodicsolutions for completely resonant nonlinear wave equationsDuke Math J 2006 134359419.
doi:10.1215/S0012‐7094‐06‐13424‐5
7 Berti M Bolle P Cantor families of periodicsolutions for wave equations via a variational principleAdvances in Mathematics 2008 21716711727.
doi:10.1016/j.aim.2007.11.004
8 Berti M Bolle P Cantor families of periodicsolutions of wave equations with Ck nonlinearitiesNonlinear Differential Equations and Applications(in press)
9 Bourgain J Periodicsolutions of nonlinear wave equationsIn: Harmonic Analysis and Partial Differential Equations. Chicago Lecturesin MathChicagoUniv Chicago Press 1999 6997
10 Craig W Wayne E Newton's method and periodicsolutions of nonlinear wave equationCommPure Appl Math 1993 4614091498.
doi:10.1002/cpa.3160461102
11 Fadell E R Rabinowitz P Generalized cohomological indextheories for Lie group actions with an application to bifurcationquestions for Hamiltonian systemsInv Math 1978 45139174.
doi:10.1007/BF01390270
12 Gentile G Mastropietro V Procesi M Periodic solutions for completely resonant nonlinear waveequationsComm Math Phys 2005 256437490.
doi:10.1007/s00220‐004‐1255‐8
13 Lidskij B V Shulman E Periodic solutions of the equation utt - uxx + u3 = 0Funct Anal Appl 1988 22332333.
doi:10.1007/BF01077432
14 Moser J Periodicorbits near an equilibrium and a theorem by Alan WeinsteinComm Pure Appl Math 1976 29724747.
doi:10.1002/cpa.3160290613
15 Struwe M Theexistence of surfaces of constant mean curvature with free boundariesActa Math 1988 1601964.
doi:10.1007/BF02392272
16 Weinstein A Normalmodes for nonlinear Hamiltonian systemsInv Math 1973 204757.
doi:10.1007/BF01405263
17 Yuan X Quasi-periodicsolutions of completely resonant nonlinear wave equationsJ Diff Equations 2006 230213274.
doi:10.1016/j.jde.2005.12.012
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed