Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2008, Vol. 3 Issue (3) : 371-397    https://doi.org/10.1007/s11464-008-0027-8
Construct irreducible representations of quantum groups (())
TANG Xin
Department of Mathematics & Computer Science, Fayetteville State University
 Download: PDF(249 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In this paper, we construct families of irreducible representations for a class of quantum groups Uq(fm(K)). First, we give a natural construction of irreducible weight representations for Uq(fm(K)) using methods in spectral theory developed by Rosenberg. Second, we study the Whittaker model for the center of Uq(fm(K)). As a result, the structure of Whittaker representations is determined, and all irreducible Whittaker representations are explicitly constructed. Finally, we prove that the annihilator of a Whittaker representation is centrally generated.
Issue Date: 05 September 2008
 Cite this article:   
TANG Xin. Construct irreducible representations of quantum groups (())[J]. Front. Math. China, 2008, 3(3): 371-397.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-008-0027-8
https://academic.hep.com.cn/fmc/EN/Y2008/V3/I3/371
1 Bavula V V . Generalized Weyl algebras and their representations. Algebra i Analiz, 1992, 4(1): 75–97; Englishtransl in: St Petersburg Math J, 1993, 4: 71–93
2 Dixmier J . EnvelopingAlgebras. Amsterdam: North-Holland, 1977
3 Drinfeld V G . Hopf algebras and the quantum Yang-Baxter equations. Soviet Math Dokll, 1985, 32: 254–258
4 Gabriel P . Descategories abeliennes. Bull Soc Math France, 1962, 90: 323–449
5 Jantzen J C . Lectures on Quantum Groups. Graduate Studiesin Math, Vol 6. Providence: Amer Math Soc, 1993
6 Ji Q, Wang D, Zhou X . Finite dimensional representations of quantum groups Uq(f(K)). East-West J Math, 2000, 2(2): 201–213
7 Jing N, Zhang J . Quantum Weyl algebras anddeformations of U(G). Pacific JMath, 1995, 171(2): 437–454
8 Kostant B . OnWhittaker vectors and representation theory. Invent Math, 1978, 48(2): 101–184.
doi:10.1007/BF01390249
9 Lynch T . GeneralizedWhittaker vectors and representation theory. Dissertation for the Ph D Degree. Cambridge: MIT, 1979
10 Macdowell E . Onmodules induced from Whittaker modules. J Algebra, 1985, 96: 161–177.
doi:10.1016/0021‐8693(85)90044‐4
11 Ondrus M . Whittakermodules for Uq(sl2). J Algebra, 2005, 289: 192–213.
doi:10.1016/j.jalgebra.2005.03.018
12 Rosenberg A . NoncommutativeAlgebraic Geometry and Representations of Quantized Algebras. Mathematics and Its Applications, Vol 330. Dordrecht: Kluwer Academic Publishers, 1995
13 Sevostyanov A . Quantumdeformation of Whittaker modules and Toda lattice. Duke Math J, 2000, 204(1): 211–238.
doi:10.1215/S0012‐7094‐00‐10522‐4
14 Smith S P . A class of algebras similar to the enveloping algebra of sl2. Trans AMS, 1990, 322: 285–314.
doi:10.2307/2001532
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed