|
|
|
Attractor for nonlinear Schrödinger equation
coupling with stochastic weakly damped, forced KdV equation |
| GUO Boling1, WANG Guolian2 |
| 1.Institute of Applied Physics and Computational Mathematics; 2.Graduate School of China Academy of Engineering Physics; |
|
|
|
|
Abstract The nonlinear Schrödinger equation coupling with stochastic weakly damped, forced KdV equation with additive noise can be solved pathwise, and the unique solution generates a random dynamical system. Then we prove that the system possesses a global weak random attractor.
|
|
Issue Date: 05 December 2008
|
|
| 1 |
Appert K, Vaclavik J . Dynamics of coupled solitons. Physics Fluids, 1977, 20: 1845–1949. doi:10.1063/1.861802
|
| 2 |
Arnold L . RandomDynamical System. Springer Monographs inMathematics. Berlin: Springer, 1998
|
| 3 |
Bona J L, Smith R . The initial-value problemfor the Korteweg-de Vries equation. PhilosTrans Roy Soc London, Ser A, 1975, 278: 555–604. doi:10.1098/rsta.1975.0035
|
| 4 |
Chang H Y, Lien Ch, Sukarto S, et al.. Propagation of ion-acoustic solitons in a non-quiescentplasma. Plasma Phys Control Fusion, 1986, 28: 675–681. doi:10.1088/0741-3335/28/4/005
|
| 5 |
Crauel H, Debussche A, Franco F . Random attractors. J Dyn DiffEq, 1997, 9(2): 307–341. doi:10.1007/BF02219225
|
| 6 |
Crauel H, Flaudoli F . Attractors for random dynamicalsystems. Probab Th Rel Fields, 1994, 100: 365–393. doi:10.1007/BF01193705
|
| 7 |
De Bouard A, Debussche A . On the stochastic Korteweg-deVries equation. J Funct Anal, 1998, 154: 215–251. doi:10.1006/jfan.1997.3184
|
| 8 |
De Bouard A, Debussche A, Tsutsumi Y . White noise driven Korteweg-de Vries equation. J Funct Anal, 1999, 169: 532–558. doi:10.1006/jfan.1999.3484
|
| 9 |
Ghidaglia J M . Finite dimensional behavior for weakly damped driven Schrödingerequations. Ann Inst Henri Poincaré,Analyse Non Linéaire, 1988, 5(4): 365–405
|
| 10 |
Gibbous J . Onthe theory of Langmuir solitons. J PlasmaPhys, 1977, 17(2): 153–170
|
| 11 |
Grimshaw R, Pelinovsky E, Tian X . Interaction of a solitary wave with an external force. Physica D, 1994, 77: 405–433. doi:10.1016/0167-2789(94)90299-2
|
| 12 |
Guo B, Chen F . Finite dimensional behaviorof global attractors for weakly damped and forced KdV equations couplingwith nonlinear Schrödinger equations. Nonlinear Analysis TMA, 1997, 29(5): 569–584. doi:10.1016/S0362-546X(96)00061-2
|
| 13 |
Guo B, Shen L . The periodic initial valueproblem and the initial value problem for the system of KdV equationcoupling with nonlinear Schrödinger equations. In: Proceedings of DD-3 Symposium, Chang Chun. 1982, 417–435
|
| 14 |
Herman R . Thestochastic, damped Korteweg-de Vries equation. J Phys A, 1990, 23: 1063–1084. doi:10.1088/0305-4470/23/7/014
|
| 15 |
Makhankov V G . Dynamics of classical solitons. PhysicsReports (Section C of Physics Letters), 1978, 35(1): 1–128. doi:10.1016/0370-1573(78)90074-1
|
| 16 |
Rosa R . Theglobal attractor of a weakly damped, forced Korteweg-de Vries equationin H1(R). Mat Contemp, 2000, 19: 129–152
|
| 17 |
Scalerandi M, Romano A, Condat C A . Korteweg-de Vries solitons under additive stochasticperturbations. Phys Rev E, 1998, 58: 4166–4173. doi:10.1103/PhysRevE.58.4166
|
| 18 |
Temam R . Infinite-DimensionalSystems in Mechanics and Physics. AppliedMath Sciences 68. New York: Springer, 1988
|
| 19 |
Yang D . Theasymptotic behavior of the stochastic Ginzburg-Landau equation withmultiplicative noise. J Math Phys, 2004, 45(11): 4064–4076. doi:10.1063/1.1795972
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|