Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2008, Vol. 3 Issue (4) : 581-587    https://doi.org/10.1007/s11464-008-0041-x
On vertex-coloring 13-edge-weighting
WANG Tao1, YU Qinglin2
1.Center for Combinatorics, Key Laboratory of Pure Mathematics and Combinatorics, Ministry of Education of China, Nankai University; 2.Center for Combinatorics, Key Laboratory of Pure Mathematics and Combinatorics, Ministry of Education of China, Nankai University;Department of Mathematics and Statistics, Thompson Rivers University;
 Download: PDF(128 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract L. Addario-Berry et al. [Discrete Appl. Math., 2008, 156: 1168–1174] have shown that there exists a 16-edge-weighting such that the induced vertex coloring is proper. In this note, we improve their result and prove that there exists a 13-edge-weighting of a graph G, such that its induced vertex coloring of G is proper. This result is one step close to the original conjecture posed by M. Karónski et al. [J. Combin. Theory, Ser. B, 2004, 91: 151–157].
Issue Date: 05 December 2008
 Cite this article:   
YU Qinglin,WANG Tao. On vertex-coloring 13-edge-weighting[J]. Front. Math. China, 2008, 3(4): 581-587.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-008-0041-x
https://academic.hep.com.cn/fmc/EN/Y2008/V3/I4/581
1 Addario-Berry L, Dalal K, McDiarmid C, Reed B, Thomason A . Vertex-colouring edge-weightings. Combinatorica, 2007, 27: 1–12.
doi:10.1007/s00493-007-0041-6
2 Addario-Berry L, Dalal K, Reed B . Degree constrained subgraphs. Discrete Appl Math, 2008, 156: 1168–1174.
doi:10.1016/j.dam.2007.05.059
3 Karon´ski M, Luczak T, Thomason A . Edge weights and vertex colours. J Combin Theory, Ser B, 2004, 91: 151–157.
doi:10.1016/j.jctb.2003.12.001
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed