Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2009, Vol. 4 Issue (2) : 349-364    https://doi.org/10.1007/s11464-009-0016-6
RESEARCH ARTICLE
Conditions for strong ellipticity and M-eigenvalues
Liqun QI1(), Hui-Hui DAI2, Deren HAN3
1. Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China; 2. Department of Mathematics, The City University of Hong Kong, Hong Kong, China; 3. School of Mathematics and Computer Sciences, Nanjing Normal University, Nanjing 210097, China
 Download: PDF(174 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The strong ellipticity condition plays an important role in nonlinear elasticity and in materials. In this paper, we de?ne M-eigenvalues for an elasticity tensor. The strong ellipticity condition holds if and only if the smallest M-eigenvalue of the elasticity tensor is positive. If the strong ellipticity condition holds, then the elasticity tensor is rank-one positive de?nite. The elasticity tensor is rank-one positive de?nite if and only if the smallest Z-eigenvalue of the elasticity tensor is positive. A Z-eigenvalue of the elasticity tensor is an M-eigenvalue but not vice versa. If the elasticity tensor is second-order positive de?nite, then the strong ellipticity condition holds. The converse conclusion is not right. Computational methods for ?nding M-eigenvalues are presented.

Keywords Elasticity tensor      strong ellipticity      M-eigenvalue      Z-eigenvalue     
Corresponding Author(s): QI Liqun,Email:maqilq@polyu.edu.hk   
Issue Date: 05 June 2009
 Cite this article:   
Liqun QI,Hui-Hui DAI,Deren HAN. Conditions for strong ellipticity and M-eigenvalues[J]. Front Math Chin, 2009, 4(2): 349-364.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-009-0016-6
https://academic.hep.com.cn/fmc/EN/Y2009/V4/I2/349
1 Cardoso J F. High-order contrasts for independent component analysis. Neural Computation , 1999, 11: 157-192
doi: 10.1162/089976699300016863
2 Chang K C, Pearson K, Zhang T. Perron-Frobenius theorem for nonnegative tensors. Commu Math Sci , 2008, 6: 507-520
3 Chang K C, Pearson K, Zhang T. On eigenvalue problems of real symmetric tensors. Journal of Mathematical Analysis and Applications , 2009, 350: 416-422
doi: 10.1016/j.jmaa.2008.09.067
4 Basser P J, Pajevic S. Spectral decomposition of a 4th-order covariance tensor: Applications to diffusion tensor MRI. Signal Processing , 2007, 87: 220-236
doi: 10.1016/j.sigpro.2006.02.050
5 Cox D, Little J, O’Shea D. Using Algebraic Geometry. New York: Springer-Verlag, 1998
6 De Lathauwer L, De Moor B, Vandewalle J. On the best rank-1 and rank-(R1,R2, …,RN) approximation of higher-order tensor. SIAM J Matrix Anal Appl , 2000, 21: 1324-1342
doi: 10.1137/S0895479898346995
7 Knowles J K, Sternberg E. On the ellipticity of the equations of non-linear elastostatics for a special material. J Elasticity , 1975, 5: 341-361
doi: 10.1007/BF00126996
8 Knowles J K, Sternberg E. On the failure of ellipticity of the equations for ?nite elastostatic plane strain. Arch Ration Mech Anal , 1977, 63: 321-336
doi: 10.1007/BF00279991
9 Ko?dis E, Regalia P A. On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J Matrix Anal Appl , 2002, 23: 863-884
doi: 10.1137/S0895479801387413
10 Lasserre J B. Global optimization with polynomials and the problems of moments. SIAM Journal on Optimization , 2001, 11: 796-817
doi: 10.1137/S1052623400366802
11 Lim L-H. Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP ’05), Vol 1 . 2005, 129-132
12 Ling C, Nie J, Qi L, Ye Y. SDP and SOS relaxations for bi-quadratic optimization over unit spheres. Department of Applied Mathematics, The Hong Kong Polytechnic University , July 2008. Manuscript
13 Morse PM, Feschbach H. Methods of Theoretic Physics, Vol 1. New York: McGraw- Hill, 1979, 519
14 Ni G, Qi L, Wang F, Wang Y. The degree of the E-characteristic polynomial of an even order tensor. J Math Anal Appl , 2007, 329: 1218-1229
doi: 10.1016/j.jmaa.2006.07.064
15 Parrilo P A. Semide?nite programming relaxation for semialgebraic Problems. Mathematical Programming , 2003, 96: 293-320
doi: 10.1007/s10107-003-0387-5
16 Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Computation , 2005, 40: 1302-1324
doi: 10.1016/j.jsc.2005.05.007
17 Qi L. Rank and eigenvalues of a supersymmetric tensor, a multivariate homogeneous polynomial and an algebraic surface de?ned by them. J Symbolic Computation , 2006, 41: 1309-1327
doi: 10.1016/j.jsc.2006.02.011
18 Qi L. Eigenvalues and invariants of tensors. J Math Anal Appl , 2007, 325: 1363-1377
doi: 10.1016/j.jmaa.2006.02.071
19 Qi L, Sun W, Wang Y. Numerical multilinear algebra and its applications. Frontiers of Mathematics in China , 2007, 2(4): 501-526
doi: 10.1007/s11464-007-0031-4
20 Qi L, Wang F, Wang Y. Z-eigenvalue methods for a global polynomial optimization problem. Mathematical Programming , 2009, 118: 301-316
doi: 10.1007/s10107-007-0193-6
21 Qi L, Wang Y, Wu E X. D-eigenvalues of diffusion kurtosis tensor. Journal of Computational and Applied Mathematics , 2008, 221: 150-157
doi: 10.1016/j.cam.2007.10.012
22 Rosakis P. Ellipticity and deformations with discontinuous deformation gradients in ?nite elastostatics. Arch Ration Mech Anal , 1990, 109: 1-37
doi: 10.1007/BF00377977
23 Simpson H C, Spector S J. On copositive matrices and strong ellipticity for isotropic elastic materials. Arch Rational Mech Anal , 1983, 84: 55-68
doi: 10.1007/BF00251549
24 Thomson W (Lord Kelvin). Elements of a mathematical theory of elasticity. Philos Trans R Soc , 1856, 166: 481
doi: 10.1098/rstl.1856.0022
25 Thomson W (Lord Kelvin). Elasticity. Encyclopedia Briannica, Vol 7. 9th Ed. London, Edingburgh: Adam and Charles Black, 1878, 796-825
26 Wang Y, Aron M. A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media. Journal of Elasticity , 1996, 44: 89-96
doi: 10.1007/BF00042193
27 Wang Y, Qi L, Zhang X. A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor. Numerical Linear Algebra with Applications (to appear)
28 Zhang T, Golub G H. Rank-1 approximation of higher-order tensors. SIAM J Matrix Anal Appl , 2001, 23: 534-550
doi: 10.1137/S0895479899352045
[1] Changjiang BU,Yamin FAN,Jiang ZHOU. Laplacian and signless Laplacian Z-eigenvalues of uniform hypergraphs[J]. Front. Math. China, 2016, 11(3): 511-520.
[2] Deren HAN, Liqun QI. A successive approximation method for quantum separability[J]. Front Math Chin, 2013, 8(6): 1275-1293.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed