|
|
|
Conditions for strong ellipticity and M-eigenvalues |
Liqun QI1( ), Hui-Hui DAI2, Deren HAN3 |
| 1. Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China; 2. Department of Mathematics, The City University of Hong Kong, Hong Kong, China; 3. School of Mathematics and Computer Sciences, Nanjing Normal University, Nanjing 210097, China |
|
|
|
|
Abstract The strong ellipticity condition plays an important role in nonlinear elasticity and in materials. In this paper, we de?ne M-eigenvalues for an elasticity tensor. The strong ellipticity condition holds if and only if the smallest M-eigenvalue of the elasticity tensor is positive. If the strong ellipticity condition holds, then the elasticity tensor is rank-one positive de?nite. The elasticity tensor is rank-one positive de?nite if and only if the smallest Z-eigenvalue of the elasticity tensor is positive. A Z-eigenvalue of the elasticity tensor is an M-eigenvalue but not vice versa. If the elasticity tensor is second-order positive de?nite, then the strong ellipticity condition holds. The converse conclusion is not right. Computational methods for ?nding M-eigenvalues are presented.
|
| Keywords
Elasticity tensor
strong ellipticity
M-eigenvalue
Z-eigenvalue
|
|
Corresponding Author(s):
QI Liqun,Email:maqilq@polyu.edu.hk
|
|
Issue Date: 05 June 2009
|
|
| 1 |
Cardoso J F. High-order contrasts for independent component analysis. Neural Computation , 1999, 11: 157-192 doi: 10.1162/089976699300016863
|
| 2 |
Chang K C, Pearson K, Zhang T. Perron-Frobenius theorem for nonnegative tensors. Commu Math Sci , 2008, 6: 507-520
|
| 3 |
Chang K C, Pearson K, Zhang T. On eigenvalue problems of real symmetric tensors. Journal of Mathematical Analysis and Applications , 2009, 350: 416-422 doi: 10.1016/j.jmaa.2008.09.067
|
| 4 |
Basser P J, Pajevic S. Spectral decomposition of a 4th-order covariance tensor: Applications to diffusion tensor MRI. Signal Processing , 2007, 87: 220-236 doi: 10.1016/j.sigpro.2006.02.050
|
| 5 |
Cox D, Little J, O’Shea D. Using Algebraic Geometry. New York: Springer-Verlag, 1998
|
| 6 |
De Lathauwer L, De Moor B, Vandewalle J. On the best rank-1 and rank-(R1,R2, …,RN) approximation of higher-order tensor. SIAM J Matrix Anal Appl , 2000, 21: 1324-1342 doi: 10.1137/S0895479898346995
|
| 7 |
Knowles J K, Sternberg E. On the ellipticity of the equations of non-linear elastostatics for a special material. J Elasticity , 1975, 5: 341-361 doi: 10.1007/BF00126996
|
| 8 |
Knowles J K, Sternberg E. On the failure of ellipticity of the equations for ?nite elastostatic plane strain. Arch Ration Mech Anal , 1977, 63: 321-336 doi: 10.1007/BF00279991
|
| 9 |
Ko?dis E, Regalia P A. On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J Matrix Anal Appl , 2002, 23: 863-884 doi: 10.1137/S0895479801387413
|
| 10 |
Lasserre J B. Global optimization with polynomials and the problems of moments. SIAM Journal on Optimization , 2001, 11: 796-817 doi: 10.1137/S1052623400366802
|
| 11 |
Lim L-H. Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP ’05), Vol 1 . 2005, 129-132
|
| 12 |
Ling C, Nie J, Qi L, Ye Y. SDP and SOS relaxations for bi-quadratic optimization over unit spheres. Department of Applied Mathematics, The Hong Kong Polytechnic University , July 2008. Manuscript
|
| 13 |
Morse PM, Feschbach H. Methods of Theoretic Physics, Vol 1. New York: McGraw- Hill, 1979, 519
|
| 14 |
Ni G, Qi L, Wang F, Wang Y. The degree of the E-characteristic polynomial of an even order tensor. J Math Anal Appl , 2007, 329: 1218-1229 doi: 10.1016/j.jmaa.2006.07.064
|
| 15 |
Parrilo P A. Semide?nite programming relaxation for semialgebraic Problems. Mathematical Programming , 2003, 96: 293-320 doi: 10.1007/s10107-003-0387-5
|
| 16 |
Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Computation , 2005, 40: 1302-1324 doi: 10.1016/j.jsc.2005.05.007
|
| 17 |
Qi L. Rank and eigenvalues of a supersymmetric tensor, a multivariate homogeneous polynomial and an algebraic surface de?ned by them. J Symbolic Computation , 2006, 41: 1309-1327 doi: 10.1016/j.jsc.2006.02.011
|
| 18 |
Qi L. Eigenvalues and invariants of tensors. J Math Anal Appl , 2007, 325: 1363-1377 doi: 10.1016/j.jmaa.2006.02.071
|
| 19 |
Qi L, Sun W, Wang Y. Numerical multilinear algebra and its applications. Frontiers of Mathematics in China , 2007, 2(4): 501-526 doi: 10.1007/s11464-007-0031-4
|
| 20 |
Qi L, Wang F, Wang Y. Z-eigenvalue methods for a global polynomial optimization problem. Mathematical Programming , 2009, 118: 301-316 doi: 10.1007/s10107-007-0193-6
|
| 21 |
Qi L, Wang Y, Wu E X. D-eigenvalues of diffusion kurtosis tensor. Journal of Computational and Applied Mathematics , 2008, 221: 150-157 doi: 10.1016/j.cam.2007.10.012
|
| 22 |
Rosakis P. Ellipticity and deformations with discontinuous deformation gradients in ?nite elastostatics. Arch Ration Mech Anal , 1990, 109: 1-37 doi: 10.1007/BF00377977
|
| 23 |
Simpson H C, Spector S J. On copositive matrices and strong ellipticity for isotropic elastic materials. Arch Rational Mech Anal , 1983, 84: 55-68 doi: 10.1007/BF00251549
|
| 24 |
Thomson W (Lord Kelvin). Elements of a mathematical theory of elasticity. Philos Trans R Soc , 1856, 166: 481 doi: 10.1098/rstl.1856.0022
|
| 25 |
Thomson W (Lord Kelvin). Elasticity. Encyclopedia Briannica, Vol 7. 9th Ed. London, Edingburgh: Adam and Charles Black, 1878, 796-825
|
| 26 |
Wang Y, Aron M. A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media. Journal of Elasticity , 1996, 44: 89-96 doi: 10.1007/BF00042193
|
| 27 |
Wang Y, Qi L, Zhang X. A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor. Numerical Linear Algebra with Applications (to appear)
|
| 28 |
Zhang T, Golub G H. Rank-1 approximation of higher-order tensors. SIAM J Matrix Anal Appl , 2001, 23: 534-550 doi: 10.1137/S0895479899352045
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|