|
|
|
Characterization of finite simple group D n (2) |
| Lingli WANG, |
| School of Science,
North University of China, Taiyuan 030051, China; |
|
|
|
|
Abstract Let G be a finite group, and let πe(G) be the spectrum of G, that is, the set of all element orders of G. In 1987, Shi Wujie put forward the following conjecture. If G is a finite group and M is a non-abelian simple group, then G≌M if and only if G=M and πe(G)=πe(M). In this short paper, we prove that if G is a finite group, then G≌M if and only if G=M and πe(G)=πe(M), where M=Dn(2) and n is even.
|
| Keywords
Finite group
simple group
order of element
prime graph
|
|
Issue Date: 05 March 2010
|
|
|
Cao H P, Shi W J. Pure quantitative characterizationof finite projective special unitary groups. Science in China, Ser A, 2002, 45(6): 761―772
|
|
Conway J H, Curtis R T, Norton S P, Parker R A, Wilson R A. Atlas of Finite Groups. Oxford: ClarendonPress, 1985
|
|
Mazurov V D, Khukhro E I. Unsolved Problems in GroupTheory. The Kourovka Notebook. Novosibirsk, 1998, 87
|
|
Shi W J. A new characterization of the sporadic simple groups. Group Theory— Porc Singapore Group Theory Conf, 1987. Berlin-New York: Walter de Gruyter, 1989, 531―540
|
|
Shi W J. A new characterization of some simple groups of Lie type. Contemporary Math, 1989, 82: 171―180
|
|
Shi W J. Pure quantitative characterization of finite simple groups (I). Progress in Natural Science, 1994, 4(3): 316―326
|
|
Shi W J, Bi J X. A characteristic propertyfor each finite projective special linear group. Lecture Notes in Math, 1990, 1456: 171―180
doi: 10.1007/BFb0100738
|
|
Shi W J, Bi J X. A characterization of Suzuki-Reegroups. Science in China, Ser A, 1991, 34(1): 14―19
|
|
Shi W J, Bi J X. A characterization of thealternating groups. Southeast Asian Bulletinof Mathematics, 1992, 16(1): 81―90
|
|
Shi W J, Tang C Y. A characterization of someorthogonal groups. Progress in NaturalScience, 1997, 7: 155―162
|
|
Vasil’ev A V. On connection between the structure of a finite group and the propertiesof its prime graph. Siberian MathematicalJournal, 2005, 46(3): 396―404
doi: 10.1007/s11202-005-0042-x
|
|
Vasil’ev A V, Vdovin E P. An adjacency criterion fortwo vertices of the prime graph of a finite simple group. Algebra and Logic, 2005, 44: 381―406
doi: 10.1007/s10469-005-0037-5
|
|
Williams J S. Prime graph components of finite groups. J Algebra, 1981, 69: 487―513
doi: 10.1016/0021-8693(81)90218-0
|
|
Xu M C, Shi W J. Pure quantitative characterizationof finite simple groups 2Dn(q) and Dl(q) (l odd). AlgebraColl, 2003, 3: 427―443
|
|
Zsigmondy K. ZurTheorie der Potenzreste. Monatsh MathematicalPhysics, 1892, 3: 265―284
doi: 10.1007/BF01692444
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|