Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2010, Vol. 5 Issue (1) : 179-190    https://doi.org/10.1007/s11464-009-0053-1
Research articles
Characterization of finite simple group D n (2)
Lingli WANG,
School of Science, North University of China, Taiyuan 030051, China;
 Download: PDF(183 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Let G be a finite group, and let πe(G) be the spectrum of G, that is, the set of all element orders of G. In 1987, Shi Wujie put forward the following conjecture. If G is a finite group and M is a non-abelian simple group, then G≌M if and only if G=M and πe(G)=πe(M). In this short paper, we prove that if G is a finite group, then G≌M if and only if G=M and πe(G)=πe(M), where M=Dn(2) and n is even.
Keywords Finite group      simple group      order of element      prime graph      
Issue Date: 05 March 2010
 Cite this article:   
Lingli WANG. Characterization of finite simple group D n (2)[J]. Front. Math. China, 2010, 5(1): 179-190.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-009-0053-1
https://academic.hep.com.cn/fmc/EN/Y2010/V5/I1/179
Cao H P, Shi W J. Pure quantitative characterizationof finite projective special unitary groups. Science in China, Ser A, 2002, 45(6): 761―772
Conway J H, Curtis R T, Norton S P, Parker R A, Wilson R A. Atlas of Finite Groups. Oxford: ClarendonPress, 1985
Mazurov V D, Khukhro E I. Unsolved Problems in GroupTheory. The Kourovka Notebook. Novosibirsk, 1998, 87
Shi W J. A new characterization of the sporadic simple groups. Group Theory— Porc Singapore Group Theory Conf, 1987. Berlin-New York: Walter de Gruyter, 1989, 531―540
Shi W J. A new characterization of some simple groups of Lie type. Contemporary Math, 1989, 82: 171―180
Shi W J. Pure quantitative characterization of finite simple groups (I). Progress in Natural Science, 1994, 4(3): 316―326
Shi W J, Bi J X. A characteristic propertyfor each finite projective special linear group. Lecture Notes in Math, 1990, 1456: 171―180

doi: 10.1007/BFb0100738
Shi W J, Bi J X. A characterization of Suzuki-Reegroups. Science in China, Ser A, 1991, 34(1): 14―19
Shi W J, Bi J X. A characterization of thealternating groups. Southeast Asian Bulletinof Mathematics, 1992, 16(1): 81―90
Shi W J, Tang C Y. A characterization of someorthogonal groups. Progress in NaturalScience, 1997, 7: 155―162
Vasil’ev A V. On connection between the structure of a finite group and the propertiesof its prime graph. Siberian MathematicalJournal, 2005, 46(3): 396―404

doi: 10.1007/s11202-005-0042-x
Vasil’ev A V, Vdovin E P. An adjacency criterion fortwo vertices of the prime graph of a finite simple group. Algebra and Logic, 2005, 44: 381―406

doi: 10.1007/s10469-005-0037-5
Williams J S. Prime graph components of finite groups. J Algebra, 1981, 69: 487―513

doi: 10.1016/0021-8693(81)90218-0
Xu M C, Shi W J. Pure quantitative characterizationof finite simple groups 2Dn(q) and Dl(q) (l odd). AlgebraColl, 2003, 3: 427―443
Zsigmondy K. ZurTheorie der Potenzreste. Monatsh MathematicalPhysics, 1892, 3: 265―284

doi: 10.1007/BF01692444
[1] Jiaxin SHEN, Shenglin ZHOU. Flag-transitive 2-υ,5,λ designs with sporadic socle[J]. Front. Math. China, 2020, 15(6): 1201-1210.
[2] Huaquan WEI, Qiao DAI, Hualian ZHANG, Yubo LV, Liying YANG. On c#-normal subgroups in finite groups[J]. Front. Math. China, 2018, 13(5): 1169-1178.
[3] Xia YIN, Nanying YANG. Finite groups with permutable Hall subgroups[J]. Front. Math. China, 2017, 12(5): 1265-1275.
[4] Zhenfeng WU,Wenbin GUO,Baojun LI. On an open problem of Guo-Skiba[J]. Front. Math. China, 2016, 11(6): 1603-1612.
[5] B. AKBARI,A. R. MOGHADDAMFAR. OD-Characterization of certain four dimensional linear groups with related results concerning degree patterns[J]. Front. Math. China, 2015, 10(1): 1-31.
[6] Mingchun XU. Thompson’s conjecture for alternating group of degree 22[J]. Front Math Chin, 2013, 8(5): 1227-1236.
[7] Hong SHEN, Hongping CAO, Guiyun CHEN. Characterization of automorphism groups of sporadic simple groups[J]. Front Math Chin, 2012, 7(3): 513-519.
[8] Jing CHEN, Weijun LIU. Nonexistence of block-transitive 6-designs[J]. Front Math Chin, 2011, 6(5): 835-845.
[9] M. AKBARI, M. KHEIRABADI, A. R. MOGHADDAMFAR. Recognition by noncommuting graph of finite simple groups L4(q)[J]. Front Math Chin, 2011, 6(1): 1-16.
[10] Qinhui JIANG, Changguo SHAO. Finite groups with 24 elements of maximal order[J]. Front Math Chin, 2010, 5(4): 665-678.
[11] Xiuxian FENG, Wenbin GUO. On ?h-normal subgroups of finite groups[J]. Front Math Chin, 2010, 5(4): 653-664.
[12] A. A. HOSEINI, A. R. MOGHADDAMFAR, . Recognizing alternating groups A p +3 for certain primes p by their orders and degree patterns[J]. Front. Math. China, 2010, 5(3): 541-553.
[13] Wenbin GUO, Fengyan XIE, Yi LU, . On g-s-supplemented subgroups of finite groups[J]. Front. Math. China, 2010, 5(2): 287-295.
[14] A. R. MOGHADDAMFAR, A. R. ZOKAYI, . OD-Characterization of alternating and symmetric groups of degrees 16 and 22[J]. Front. Math. China, 2009, 4(4): 669-680.
[15] ZHANG Liangcai, SHI Wujie. OD-Characterization of all simple groups whose orders are less than 10[J]. Front. Math. China, 2008, 3(3): 461-474.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed