|
|
|
Finite element method for a nonsmooth elliptic
equation |
| Lili CHANG1,Ningning YAN1,Wei GONG2, |
| 1.State Key Laboratory
of Scientific and Engineering Computing, Institute of Systems Science,
Academy of Mathematics and System Sciences, Chinese Academy of Sciences,
Beijing 100190, China; 2.State Key Laboratory
of Scientific and Engineering Computing, Institute of Computational
Mathematics, Academy of Mathematics and System Sciences, Chinese Academy
of Sciences, Beijing 100190, China; |
|
|
Aziz A K, Stephens A B, Suri M. Numerical methods for reaction-diffusion problems withnon-differentiable kinetics. Numer Math, 1988, 51: 1―11
doi: 10.1007/BF01395875
|
|
Bergounioux M, Ito K, Kunisch K. Primal-dual strategy for constrained optimal controlproblems. SIAM J Control Optim, 1999, 37: 1176―1194
doi: 10.1137/S0363012997328609
|
|
Chen C. FiniteElement Method and High Accuracy Analysis. Changsha: Hunan Science Press, 1982 (in Chinese)
|
|
Chen X. Firstorder conditions for discretized nonsmooth constrained optimal controlproblems. SIAM J Control Optim, 2004, 42: 2004―2015
doi: 10.1137/S0363012902414160
|
|
Chen X, Nashed Z, Qi L. Smoothing methods and semismooth methods for nondifferentiableoperator equations. SIAM J Numer Anal, 2000, 38: 1200―1216
doi: 10.1137/S0036142999356719
|
|
Ciarlet P G. The Finite Element Methods for Elliptic Problems. Amsterdam: North Holland, 1978
|
|
Clément Ph. Approximation by finite element functions using local regularization. RAIRO Anal Numer, 1975, 9: 77―84
|
|
Hinze M. Avariational discretization concept in control constrained optimization:the linear-quadratic case. J ComputationalOptimization and Applications, 2005, 30: 45―63
doi: 10.1007/s10589-005-4559-5
|
|
Kikuchi F. Finiteelement analysis of a nondifferentiable nonlinear problem relatedto MHD equilibria. J Fac Sci Univ Tokyo,Sect IA Math, 1988, 35: 77―101
|
|
Kikuchi F, Nakazato K, Ushijima T. Finite element approximation of a nonlinear eigenvalueproblem related to MHD equilibria. JapanJ Appl Math, 1984, 1: 369―403
doi: 10.1007/BF03167065
|
|
Kˇŕıˇzek M. Superconvergenceresults for linear triangular elements. Lecture Notes in Mathematics, 1986, 1192: 315―320
doi: 10.1007/BFb0076087
|
|
Lin Q, Yan N. Structure and Analysis forEfficient Finite Element Methods. Baoding: Publishers of Hebei University, 1996 (in Chinese)
|
|
Liu W B, Yan N. Adaptive Finite Element Methodsfor Optimal Control Governed by PDEs. Beijing: Science Press, 2008
|
|
Scott L R, Zhang S. Finite element interpolationof nonsmooth functions satisfying boundary conditions. Math Comp, 1990, 54: 483―493
doi: 10.2307/2008497
|
|
Oganesyan L A, Rukhovetz L A. Study of the rate of convergenceof variational difference scheme for second order elliptic equationsin two-dimensional field with a smooth boundary. USSR Comput Math Math Phy, 1969, 9: 158―183
doi: 10.1016/0041-5553(69)90159-1
|
|
Verfürth R. AReview of A Posteriori Error Estimation and Adaptive Mesh Refinement. London: Wiley-Teubner, 1996
|
|
Yan N. Superconvergenceanalysis and a posteriori error estimation in finite element method. Beijing: Science Press, 2008
|
|
Zhu Q, Lin Q. Superconvergence Theory ofFinite Element Methods. Changsha: Hunan Science Press, 1989 (in Chinese)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|