Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2010, Vol. 5 Issue (2) : 191-209    https://doi.org/10.1007/s11464-010-0001-0
Research articles
Finite element method for a nonsmooth elliptic equation
Lili CHANG1,Ningning YAN1,Wei GONG2,
1.State Key Laboratory of Scientific and Engineering Computing, Institute of Systems Science, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100190, China; 2.State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100190, China;
 Download: PDF(447 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In this paper, we study the finite element method for a nonsmooth elliptic equation. Error analysis is presented, including a priori and a posteriori error estimates as well as superconvergence analysis. We also propose two algorithms for solving the underlying equation. Numerical experiments are employed to confirm our error estimations and the efficiency of our algorithms.
Keywords Finite element method      nonsmooth elliptic equation      a priori error estimate      a posteriori error estimate      superconvergence analysis      active set method      
Issue Date: 05 June 2010
 Cite this article:   
Lili CHANG,Wei GONG,Ningning YAN. Finite element method for a nonsmooth elliptic equation[J]. Front. Math. China, 2010, 5(2): 191-209.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-010-0001-0
https://academic.hep.com.cn/fmc/EN/Y2010/V5/I2/191
Aziz A K, Stephens A B, Suri M. Numerical methods for reaction-diffusion problems withnon-differentiable kinetics. Numer Math, 1988, 51: 1―11

doi: 10.1007/BF01395875
Bergounioux M, Ito K, Kunisch K. Primal-dual strategy for constrained optimal controlproblems. SIAM J Control Optim, 1999, 37: 1176―1194

doi: 10.1137/S0363012997328609
Chen C. FiniteElement Method and High Accuracy Analysis. Changsha: Hunan Science Press, 1982 (in Chinese)
Chen X. Firstorder conditions for discretized nonsmooth constrained optimal controlproblems. SIAM J Control Optim, 2004, 42: 2004―2015

doi: 10.1137/S0363012902414160
Chen X, Nashed Z, Qi L. Smoothing methods and semismooth methods for nondifferentiableoperator equations. SIAM J Numer Anal, 2000, 38: 1200―1216

doi: 10.1137/S0036142999356719
Ciarlet P G. The Finite Element Methods for Elliptic Problems. Amsterdam: North Holland, 1978
Clément Ph. Approximation by finite element functions using local regularization. RAIRO Anal Numer, 1975, 9: 77―84
Hinze M. Avariational discretization concept in control constrained optimization:the linear-quadratic case. J ComputationalOptimization and Applications, 2005, 30: 45―63

doi: 10.1007/s10589-005-4559-5
Kikuchi F. Finiteelement analysis of a nondifferentiable nonlinear problem relatedto MHD equilibria. J Fac Sci Univ Tokyo,Sect IA Math, 1988, 35: 77―101
Kikuchi F, Nakazato K, Ushijima T. Finite element approximation of a nonlinear eigenvalueproblem related to MHD equilibria. JapanJ Appl Math, 1984, 1: 369―403

doi: 10.1007/BF03167065
Kˇŕıˇzek M. Superconvergenceresults for linear triangular elements. Lecture Notes in Mathematics, 1986, 1192: 315―320

doi: 10.1007/BFb0076087
Lin Q, Yan N. Structure and Analysis forEfficient Finite Element Methods. Baoding: Publishers of Hebei University, 1996 (in Chinese)
Liu W B, Yan N. Adaptive Finite Element Methodsfor Optimal Control Governed by PDEs. Beijing: Science Press, 2008
Scott L R, Zhang S. Finite element interpolationof nonsmooth functions satisfying boundary conditions. Math Comp, 1990, 54: 483―493

doi: 10.2307/2008497
Oganesyan L A, Rukhovetz L A. Study of the rate of convergenceof variational difference scheme for second order elliptic equationsin two-dimensional field with a smooth boundary. USSR Comput Math Math Phy, 1969, 9: 158―183

doi: 10.1016/0041-5553(69)90159-1
Verfürth R. AReview of A Posteriori Error Estimation and Adaptive Mesh Refinement. London: Wiley-Teubner, 1996
Yan N. Superconvergenceanalysis and a posteriori error estimation in finite element method. Beijing: Science Press, 2008
Zhu Q, Lin Q. Superconvergence Theory ofFinite Element Methods. Changsha: Hunan Science Press, 1989 (in Chinese)
[1] Ruishu WANG, Xiaoshen WANG, Kai ZHANG, Qian ZHOU. Hybridized weak Galerkin finite element method for linear elasticity problem in mixed form[J]. Front. Math. China, 2018, 13(5): 1121-1140.
[2] Ran ZHANG,Haiming SONG,Nana LUAN. Weak Galerkin finite element method for valuation of American options[J]. Front. Math. China, 2014, 9(2): 455-476.
[3] Pengzhan HUANG, Yinnian HE, Xinlong FENG. Convergence and stability of two-level penalty mixed finite element method for stationary Navier-Stokes equations[J]. Front Math Chin, 2013, 8(4): 837-854.
[4] Siriguleng HE, Hong LI, Yang LIU. Time discontinuous Galerkin space-time finite element method for nonlinear Sobolev equations[J]. Front Math Chin, 2013, 8(4): 825-836.
[5] Yang LIU, Hong LI, Wei GAO, Siriguleng HE, Jinfeng WANG. Splitting positive definite mixed element method for viscoelasticity wave equation[J]. Front Math Chin, 2012, 7(4): 725-742.
[6] Yanping CHEN, Zuliang LU, Ruyi GUO. Error estimates of triangular mixed finite element methods for quasilinear optimal control problems[J]. Front Math Chin, 2012, 7(3): 397-413.
[7] Gang YUAN, Ruo LI. Sharp a posteriori error estimate for elliptic equation with singular data[J]. Front Math Chin, 2011, 6(1): 177-202.
[8] YAN Ningning, ZHOU Zhaojie. A posteriori error estimates of constrained optimal control problem governed by convection diffusion equations[J]. Front. Math. China, 2008, 3(3): 415-442.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed