|
|
|
Low-dimensional cohomology of q-deformed Heisenberg-Virasoro algebra of Hom-type |
Yongsheng CHENG1,2( ), Hengyun YANG3 |
| 1. Institute of Contemporary Mathematics & School of Mathematics and Information Science, Henan University, Kaifeng 475004, China; 2. Department of Mathematics, University of Science and Technology of China, Hefei 230026, China; 3. Department of Basic Sciences, Shanghai Maritime University, Shanghai 200135, China |
|
|
|
|
Abstract Hom-Lie algebras were introduced by J. Hartwig, D. Larsson, and S. Silvestrov as a generalized Lie algebra. When studying the homology and cohomology theory of Hom-Lie algebras, the authors find that the lowdimensional cohomology theory of Hom-Lie algebras is not well studied because of the Hom-Jacobi identity. In this paper, the authors compute the first and second cohomology groups of the q-deformed Heisenberg-Virasoro algebra of Hom-type, which will be useful to build the low-dimensional cohomology theory of Hom-Lie algebras.
|
| Keywords
Hom-Lie algebra
q-deformed Heisenberg-Virasoro algebra of Hom-type
derivation
cohomology group
|
|
Corresponding Author(s):
CHENG Yongsheng,Email:yscheng@ustc.edu.cn
|
|
Issue Date: 05 December 2010
|
|
| 1 |
Arbarello E, De Concini C, Kac V G, Procesi C. Moduli spaces of curves and representation theory. Comm Math Phys , 1988, 117: 1-36 doi: 10.1007/BF01228409
|
| 2 |
Farnsteiner R. Derivations and central extensions of finitely generated graded Lie algebra. J Algebra , 1988, 118: 33-45 doi: 10.1016/0021-8693(88)90046-4
|
| 3 |
Gao Y. The second Leibniz homology group for Kac-Moody Lie algebras. Bull of LMS , 2000, 32: 25-33
|
| 4 |
Hartwig J, Larsson D, Silvestrov S. Deformations of Lie algebras using σ-derivation. J Algebra , 2006, 295: 314-361
|
| 5 |
Jiang Q, Jiang C. Representations of the twisted Heisenberg-Virasoro algebra and the full Toroidal Lie Algebras. Algebra Colloq , 2007, 14(1): 117-134
|
| 6 |
Jin Q, Li X. Hom-Lie algebra structures on semisimple Lie algebras. J Algebra , 2008, 319: 1398-1408 doi: 10.1016/j.jalgebra.2007.12.005
|
| 7 |
Kac V, Cheung P. Quantum Calculus. Berlin: Springer-Verlag, 2002
|
| 8 |
Kassel C. Cyclic homology of differential operators, the Virasoro algebra and a q-analogue. Comm Math Phys , 1992, 146: 343-351 doi: 10.1007/BF02102632
|
| 9 |
Larsson D, Silvestrov S D. Quasi-hom-Lie algebras, central extensions and 2-cocyclelike identities. J Algebra , 2005, 288: 321-344 doi: 10.1016/j.jalgebra.2005.02.032
|
| 10 |
Leger G F. Generalized derivations of Lie algebras. J Algebra , 2000, 228: 165-203 doi: 10.1006/jabr.1999.8250
|
| 11 |
Li W. 2-Cocycles on the algebra of differential operators. J Algebra , 1989, 122: 64-80 doi: 10.1016/0021-8693(89)90237-8
|
| 12 |
Liu D, Zhu L. Generalized Heisenberg-Virasoro algebra. Front Math China , 2009, 4(2): 297-310 doi: 10.1007/s11464-009-0019-3
|
| 13 |
Loday J-L, Pirashvili T. Universal enveloping algebras of Leibniz algebras and (co)homology. Math Ann , 1993, 296: 139-158 doi: 10.1007/BF01445099
|
| 14 |
Makhlouf A, Silvestrov S D. Notes on formal deformations of Hom- associative and Hom-Lie algebras. arXiv:0712.3130v1 [math.RA]
|
| 15 |
Scheunert M, Zhang R B. Cohomology of Lie superalgebras and their generalizations. J Math Phys , 1998, 39: 5024-5061 doi: 10.1063/1.532508
|
| 16 |
Shen R, Jiang C. The derivation algebra and automorphism group of the twisted Heisenberg-Virasoro algebra. Comm Algebra , 2006, 34(7): 2547-2558 doi: 10.1080/00927870600651257
|
| 17 |
Su Y. 2-cocycles on the Lie algebras of generalized differential operators. Comm Algebra , 2002, 30: 763-782 doi: 10.1081/AGB-120013180
|
| 18 |
Su Y. Low dimensional cohomology of general conformal algebras gcN.JMath Phys , 2004, 45: 509-524 doi: 10.1063/1.1628839
|
| 19 |
Su Y, Zhao K. Second cohomology group of generalized Witt type Lie algebras and certain representations. Comm Alegrba , 2002, 30: 3285-3309 doi: 10.1081/AGB-120004488
|
| 20 |
Yau D. Hom-algebras as deformations and homology. J Lie Theory , 2009, 19: 409-421
|
| 21 |
Zhang Q, Zhang Y. Derivations and extensions of Lie color algebra. Acta Math Scientia , 2008, 28B(4): 933-948
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|