Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2010, Vol. 5 Issue (4) : 607-622    https://doi.org/10.1007/s11464-010-0063-z
RESEARCH ARTICLE
Low-dimensional cohomology of q-deformed Heisenberg-Virasoro algebra of Hom-type
Yongsheng CHENG1,2(), Hengyun YANG3
1. Institute of Contemporary Mathematics & School of Mathematics and Information Science, Henan University, Kaifeng 475004, China; 2. Department of Mathematics, University of Science and Technology of China, Hefei 230026, China; 3. Department of Basic Sciences, Shanghai Maritime University, Shanghai 200135, China
 Download: PDF(204 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Hom-Lie algebras were introduced by J. Hartwig, D. Larsson, and S. Silvestrov as a generalized Lie algebra. When studying the homology and cohomology theory of Hom-Lie algebras, the authors find that the lowdimensional cohomology theory of Hom-Lie algebras is not well studied because of the Hom-Jacobi identity. In this paper, the authors compute the first and second cohomology groups of the q-deformed Heisenberg-Virasoro algebra of Hom-type, which will be useful to build the low-dimensional cohomology theory of Hom-Lie algebras.

Keywords Hom-Lie algebra      q-deformed Heisenberg-Virasoro algebra of Hom-type      derivation      cohomology group     
Corresponding Author(s): CHENG Yongsheng,Email:yscheng@ustc.edu.cn   
Issue Date: 05 December 2010
 Cite this article:   
Yongsheng CHENG,Hengyun YANG. Low-dimensional cohomology of q-deformed Heisenberg-Virasoro algebra of Hom-type[J]. Front Math Chin, 2010, 5(4): 607-622.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-010-0063-z
https://academic.hep.com.cn/fmc/EN/Y2010/V5/I4/607
1 Arbarello E, De Concini C, Kac V G, Procesi C. Moduli spaces of curves and representation theory. Comm Math Phys , 1988, 117: 1-36
doi: 10.1007/BF01228409
2 Farnsteiner R. Derivations and central extensions of finitely generated graded Lie algebra. J Algebra , 1988, 118: 33-45
doi: 10.1016/0021-8693(88)90046-4
3 Gao Y. The second Leibniz homology group for Kac-Moody Lie algebras. Bull of LMS , 2000, 32: 25-33
4 Hartwig J, Larsson D, Silvestrov S. Deformations of Lie algebras using σ-derivation. J Algebra , 2006, 295: 314-361
5 Jiang Q, Jiang C. Representations of the twisted Heisenberg-Virasoro algebra and the full Toroidal Lie Algebras. Algebra Colloq , 2007, 14(1): 117-134
6 Jin Q, Li X. Hom-Lie algebra structures on semisimple Lie algebras. J Algebra , 2008, 319: 1398-1408
doi: 10.1016/j.jalgebra.2007.12.005
7 Kac V, Cheung P. Quantum Calculus. Berlin: Springer-Verlag, 2002
8 Kassel C. Cyclic homology of differential operators, the Virasoro algebra and a q-analogue. Comm Math Phys , 1992, 146: 343-351
doi: 10.1007/BF02102632
9 Larsson D, Silvestrov S D. Quasi-hom-Lie algebras, central extensions and 2-cocyclelike identities. J Algebra , 2005, 288: 321-344
doi: 10.1016/j.jalgebra.2005.02.032
10 Leger G F. Generalized derivations of Lie algebras. J Algebra , 2000, 228: 165-203
doi: 10.1006/jabr.1999.8250
11 Li W. 2-Cocycles on the algebra of differential operators. J Algebra , 1989, 122: 64-80
doi: 10.1016/0021-8693(89)90237-8
12 Liu D, Zhu L. Generalized Heisenberg-Virasoro algebra. Front Math China , 2009, 4(2): 297-310
doi: 10.1007/s11464-009-0019-3
13 Loday J-L, Pirashvili T. Universal enveloping algebras of Leibniz algebras and (co)homology. Math Ann , 1993, 296: 139-158
doi: 10.1007/BF01445099
14 Makhlouf A, Silvestrov S D. Notes on formal deformations of Hom- associative and Hom-Lie algebras. arXiv:0712.3130v1 [math.RA]
15 Scheunert M, Zhang R B. Cohomology of Lie superalgebras and their generalizations. J Math Phys , 1998, 39: 5024-5061
doi: 10.1063/1.532508
16 Shen R, Jiang C. The derivation algebra and automorphism group of the twisted Heisenberg-Virasoro algebra. Comm Algebra , 2006, 34(7): 2547-2558
doi: 10.1080/00927870600651257
17 Su Y. 2-cocycles on the Lie algebras of generalized differential operators. Comm Algebra , 2002, 30: 763-782
doi: 10.1081/AGB-120013180
18 Su Y. Low dimensional cohomology of general conformal algebras gcN.JMath Phys , 2004, 45: 509-524
doi: 10.1063/1.1628839
19 Su Y, Zhao K. Second cohomology group of generalized Witt type Lie algebras and certain representations. Comm Alegrba , 2002, 30: 3285-3309
doi: 10.1081/AGB-120004488
20 Yau D. Hom-algebras as deformations and homology. J Lie Theory , 2009, 19: 409-421
21 Zhang Q, Zhang Y. Derivations and extensions of Lie color algebra. Acta Math Scientia , 2008, 28B(4): 933-948
[1] Zhuo ZHANG, Jixia YUAN, Xiaomin TANG. Super-biderivations of not-finitely graded Lie superalgebras related to generalized super-Virasoro algebras[J]. Front. Math. China, 2020, 15(6): 1295-1306.
[2] Zhenyuan NI, Jiancai SUN. Super-biderivations on twisted N = 1 Schrödinger-Neveu-Schwarz algebra[J]. Front. Math. China, 2019, 14(5): 907-922.
[3] Juan LUO, Shengqiang WANG, Quanshui WU. Frobenius Poisson algebras[J]. Front. Math. China, 2019, 14(2): 395-420.
[4] Xiaomin TANG, Lijuan LIU, Jinli XU. Lie bialgebra structures on derivation Lie algebra over quantum tori[J]. Front. Math. China, 2017, 12(4): 949-965.
[5] Ruipu BAI, Zhenheng LI, Weidong WANG. Infinite-dimensional 3-Lie algebras and their connections to Harish-Chandra modules[J]. Front. Math. China, 2017, 12(3): 515-530.
[6] Nihan Baydar YARBIL,Nurcan ARGAC. A note on generalized Lie derivations of prime rings[J]. Front. Math. China, 2017, 12(1): 247-260.
[7] Shengqiang WANG. Modular derivations for extensions of Poisson algebras[J]. Front. Math. China, 2017, 12(1): 209-218.
[8] Hiroaki KOMATSU. On the generalized derivations of bimodules[J]. Front. Math. China, 2017, 12(1): 135-142.
[9] Li REN,Qiang MU,Yongzheng ZHANG. A class of generalized odd Hamiltonian Lie superalgebras[J]. Front. Math. China, 2014, 9(5): 1105-1129.
[10] Hengyun YANG, Yafeng YU, Tingfu YAO. Derivation algebra and automorphism group of generalized topological N = 2 superconformal algebra[J]. Front Math Chin, 2013, 8(4): 973-986.
[11] Lili MA, Liangyun CHEN, Yongzheng ZHANG. Finite-dimensional simple modular Lie superalgebra M[J]. Front Math Chin, 2013, 8(2): 411-441.
[12] Zhu WEI, Yongzheng ZHANG. Derivations for even part of finite-dimensional modular Lie superalgebra Ω?[J]. Front Math Chin, 2012, 7(6): 1169-1194.
[13] Jinglian JIANG, Xiaoli KONG. First cohomology group of rank two Witt algebra to its Larsson modules[J]. Front Math Chin, 2011, 6(4): 671-688.
[14] Wei WANG, Yongping WU, Chunguang XIA. Second cohomology group of extended W-algebras[J]. Front Math Chin, 2011, 6(4): 745-758.
[15] Jiayuan FU, Yongcun GAO, . Derivation algebra and automorphism group of generalized Ramond N = 2 superconformal algebra[J]. Front. Math. China, 2009, 4(4): 637-650.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed