Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2010, Vol. 5 Issue (4) : 679-685    https://doi.org/10.1007/s11464-010-0078-5
RESEARCH ARTICLE
Notes on NE-subgroups of finite groups
Jiakuan LU1, Xiuyun GUO2()
1. College of Mathematical Sciences, Guangxi Normal University, Guilin 541004, China; 2. Department of Mathematics, Shanghai University, Shanghai 200444, China
 Download: PDF(117 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we first analyze the structure of a finite nonsolvable group in which every cyclic subgroup of order 2 and 4 of every second maximal subgroup is an NE-subgroup. Next, we prove that a finite group G is solvable if every nonnilpotent subgroup of G is a PE-group.

Keywords NE-subgroup      solvable group      p-nilpotent group     
Corresponding Author(s): GUO Xiuyun,Email:xyguo@staff.shu.edu.cn   
Issue Date: 05 December 2010
 Cite this article:   
Jiakuan LU,Xiuyun GUO. Notes on NE-subgroups of finite groups[J]. Front Math Chin, 2010, 5(4): 679-685.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-010-0078-5
https://academic.hep.com.cn/fmc/EN/Y2010/V5/I4/679
1 Buckley J. Finite groups whose minimal subgroups are normal. Math Z , 1970, 116: 15-17
doi: 10.1007/BF01110184
2 Gorenstein D. Finite Groups. New York-London: Harper & Row, 1968
3 Gorenstein D. Finite Simple Groups: An Introduction to Their Classification. New York: Plenum Publishing Corp, 1982
4 Huppert B. Endliche Gruppen I. New York, Berlin: Springer-Verlag, 1967
5 Li S. On minimal subgroups of finite groups. Comm Algebra , 1994, 22: 1913-1918
doi: 10.1080/00927879408824946
6 Li S. On minimal non-PE-groups. J Pure and Applied Algebra , 1998, 132: 149-158
doi: 10.1016/S0022-4049(97)00106-0
7 Li S, Zhao Y. Some finite nonsolvable groups characterized by their solvable subgroups. Acta Mathematica Sinica (New Ser) , 1988, 4: 5-13
doi: 10.1007/BF02560307
8 Li Y. Finite groups with NE-subgroups. J Group Theory , 2006, 9: 49-58
doi: 10.1515/JGT.2006.003
9 Sastry N. On minimal non-PN-groups. J Algebra , 1980, 65: 104-109
doi: 10.1016/0021-8693(80)90241-0
10 Szasz F. On cyclic groups. Fund Math , 1956, 43: 238-240
[1] Yujian HUANG, Yangming LI, Shouhong QIAO. On weakly s-permutably embedded subgroups of finite groups (II)[J]. Front Math Chin, 2013, 8(4): 855-867.
[2] Tao ZHAO, Xianhua LI. Semi cover-avoiding properties of finite groups[J]. Front Math Chin, 2010, 5(4): 793-800.
[3] Zhencai SHEN, Wujie SHI, Qingliang ZHANG, . S-quasinormality of finite groups[J]. Front. Math. China, 2010, 5(2): 329-339.
[4] LI Yangming, PENG Kangtai. -quasinormally embedded and c-supplemented subgroup of finite group[J]. Front. Math. China, 2008, 3(4): 511-521.
[5] SHAO Changguo, SHI Wujie, JIANG Qinhui. Characterization of simple -groups[J]. Front. Math. China, 2008, 3(3): 355-370.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed