|
|
|
Pathwise uniqueness of multi-dimensional stochastic differential equations with H?lder diffusion coefficients |
Dejun LUO( ) |
| Key Lab of Random Complex Structures and Data Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China |
|
| 1 |
Dawson D A, Fleischmann K, Xiong J. Strong uniqueness for cyclically symbiotic branching diffusions. Statist Probab Lett, 2005, 73: 251-257 doi: 10.1016/j.spl.2005.03.012
|
| 2 |
Fang S. Canonical Brownian motion on the diffeomorphism group of the circle. J Funct Anal, 2002, 196: 162-179 doi: 10.1006/jfan.2002.3922
|
| 3 |
Fang S, Imkeller P, Zhang T. Global flows for stochastic differential equations without global Lipschitz conditions. Ann of Probab, 2007, 35: 180-205 doi: 10.1214/009117906000000412
|
| 4 |
Fang S, Luo D. Flow of homeomorphisms and stochastic transport equations. Stoch Anal Appl, 2007, 25: 1079-1108 doi: 10.1080/07362990701540568
|
| 5 |
Fang S, Luo D, Thalmaier A. Stochastic differential equations with coefficients in Sobolev spaces. J Funct Anal, 2010, 259: 1129-1168 doi: 10.1016/j.jfa.2010.02.014
|
| 6 |
Fang S, Zhang T. A study of a class of differential equations with non-Lipschitzian coefficients. Probab Theory Relat Fields, 2005, 132: 356-390 doi: 10.1007/s00440-004-0398-z
|
| 7 |
Fang S, Zhang T. Isotropic stochastic flow of homeomorphisms on Sd for the critical Sobolev exponent. J Math Pures et Appl, 2006, 85: 580-597 doi: 10.1016/j.matpur.2005.10.012
|
| 8 |
He H. Strong uniqueness for a class of singular SDEs for catalytic branching diffusions. Statist Probab Lett, 2009, 79: 182-187 doi: 10.1016/j.spl.2008.07.049
|
| 9 |
Ikeda N, Watanabe S. Stochastic Differential Equations and Diffusion Processes.2nd ed. North-Holland Mathematical Library, Vol 24. Amsterdam: North-Holland, 1989
|
| 10 |
Krylov N V, R?ckner M. Strong solutions of stochastic equations with singular time dependent drift. Prob Theory Relat Fields, 2005, 131: 154-196 doi: 10.1007/s00440-004-0361-z
|
| 11 |
Kunita H. Stochastic Flows and Stochastic Differential Equations.Cambridge: Cambridge University Press, 1990
|
| 12 |
Luo D. Regularity of solutions to differential equations with non-Lipschitz coefficients. Bull Sci Math, 2008, 132: 257-271 doi: 10.1016/j.bulsci.2007.05.003
|
| 13 |
Malliavin P. The canonical diffusion above the diffeomorphism group of the circle. C R Acad Sci, 1999, 329: 325-329
|
| 14 |
Suresh Kumar K. A class of degenerate stochastic differential equations with non-Lipschitz coefficients.http://arxiv.org/abs/0904.2629
|
| 15 |
Yamada T, Watanabe S. On the uniqueness of stochastic differential equations. J Math Kyoto Univ, 1971, 11: 553-563
|
| 16 |
Zhang X. Homeomorphic flows for multi-dimensional SDEs with non-Lipschitz coefficients. Stochastic Process Appl, 2005, 115: 435-448 ; Erratum to “Homeomorphic flows for multi-dimensional SDEs with non-Lipschitz coefficients”. Stochastic Process Appl, 2006, 116: 873-875 doi: 10.1016/j.spa.2005.11.014
|
| 17 |
Zhang X. Strong solutions of SDEs with singular drift and Sobolev diffusion coefficients. Stochastic Process Appl, 2005, 115: 1805-1818 doi: 10.1016/j.spa.2005.06.003
|
| 18 |
Zhang X. Stochastic flows of SDEs with irregular coefficients and stochastic transport equations. Bull Sci Math, 2010, 134: 340-378 doi: 10.1016/j.bulsci.2009.12.004
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|