|
|
|
Collision local times of two independent fractional Brownian motions |
Xiangjun WANG1, Jingjun GUO1,2( ), Guo JIANG1,3 |
| 1. School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China; 2. School of Statistics, Lanzhou University of Finance and Economics, Lanzhou 730020, China; 3. School of Mathematics and Statistics, Hubei Normal University, Huangshi 435002, China |
|
|
|
|
Abstract In this paper, the collision local times for two independent fractional Brownian motions are considered as generalized white noise functionals. Moreover, the collision local times exist in L2 under mild conditions and chaos expansions are also given.
|
| Keywords
Fractional Brownian motion
collision local time
white noise functional
|
|
Corresponding Author(s):
GUO Jingjun,Email:gjjemail@126.com
|
|
Issue Date: 01 April 2011
|
|
| 1 |
Albeverio S, Oliveira M, Streit L. Intersection local times of independent Brownian motions as generalized white noise functionals. Acta Appl Math , 2001, 69: 221-241 doi: 10.1023/A:1014212906782
|
| 2 |
Ayache A, Wu D, Xiao Y. Joint continuity of the local times of fractional Brownian sheets. Ann Inst H Poin Prob Stat , 2008, 44: 727-748 doi: 10.1214/07-AIHP131
|
| 3 |
Bender C. An It? formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter. Stoch Processes Appl , 2003, 104: 81-106 doi: 10.1016/S0304-4149(02)00212-0
|
| 4 |
Biagini F, Hu Y, Φksendal B, Zhang T. Stochastic Calculus for Fractional Brownian Motion and Applications. London: Springer-Verlag, 2008
|
| 5 |
Drumond C, Oliveira M, Silva J. Intersection local times of fractional Brownian motions with H ∈ (0, 1) as generalized white noise functionals. In: Bernido C C, Bernido M V, eds. 5th Jagna International Workshop Stochastic and Quantum Dynamics of Biomolecular Systems. AIP Conference Proceedings, Vol 1021 . Melville: American Institute of Physics, 2008, 34-45 doi: 10.1063/1.2956798
|
| 6 |
Faria M, Hida T, Streit L, Watanabe H. Intersection local times as generalized white noise functionals. Acta Appl Math , 1997, 46: 351-362 doi: 10.1023/A:1005782030567
|
| 7 |
Guo J, Xiao Y. Multiple intersection local times of fractional Brownian motion. J of Math (to appear)
|
| 8 |
Hu Y. Self-intersection local time of fractional Brownian motions—via chaos expansion. J Math Kyoto Univ , 2001, 41: 233-250
|
| 9 |
Hu Y, Nualart D. Regularity of renormalized self-intersection local time for fractional Brownian motion. Commun Inf Syst , 2007, 7: 21-30
|
| 10 |
Huang Z, Li C. On fractional stable processes and sheets: white noise approach. J Math Anal Appl , 2007, 325: 624-635 doi: 10.1016/j.jmaa.2006.02.020
|
| 11 |
Imkeller P, Yan J. Multiple intersection local time of planar Brownian motion as a particular Hida distribution. J Func Anal , 1996, 140: 256-273 doi: 10.1006/jfan.1996.0107
|
| 12 |
Jiang Y, Wang Y. On the collision local time of fractional Brownian motions. Chin Ann Math , 2007, 28B: 311-320 doi: 10.1007/s11401-006-0029-3
|
| 13 |
Marcus M, Rosen J. Additive functionals of several Lévy processes and intersection local times. Ann Prob , 1999, 27: 1643-1678
|
| 14 |
Nualart D, Ortiz-Latorre S. Intersection local time for two independent fractional Brownian motions. J Theo Prob , 2007, 20: 759-767 doi: 10.1007/s10959-007-0106-x
|
| 15 |
Obata N. White Noise Calculus and Fock Space. Lect Notes in Math, Vol 1577 . Berlin: Springer-Verlag, 1994
|
| 16 |
Oliveira M, Silva J, Streit L. Intersection local times of independent fractional Brownian motions as generalized white noise functionals. Acta Appl Math , 2011, 113: 17-39 doi: 10.1007/s10440-010-9579-1
|
| 17 |
Watanabe H. The local time of self-intersections of Brownian motions as generalized Brownian functionals. Lett in Math Phys , 1991, 23: 1-9 doi: 10.1007/BF01811288
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|