Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2011, Vol. 6 Issue (2) : 325-338    https://doi.org/10.1007/s11464-011-0095-z
RESEARCH ARTICLE
Collision local times of two independent fractional Brownian motions
Xiangjun WANG1, Jingjun GUO1,2(), Guo JIANG1,3
1. School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China; 2. School of Statistics, Lanzhou University of Finance and Economics, Lanzhou 730020, China; 3. School of Mathematics and Statistics, Hubei Normal University, Huangshi 435002, China
 Download: PDF(198 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, the collision local times for two independent fractional Brownian motions are considered as generalized white noise functionals. Moreover, the collision local times exist in L2 under mild conditions and chaos expansions are also given.

Keywords Fractional Brownian motion      collision local time      white noise functional     
Corresponding Author(s): GUO Jingjun,Email:gjjemail@126.com   
Issue Date: 01 April 2011
 Cite this article:   
Xiangjun WANG,Jingjun GUO,Guo JIANG. Collision local times of two independent fractional Brownian motions[J]. Front Math Chin, 2011, 6(2): 325-338.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-011-0095-z
https://academic.hep.com.cn/fmc/EN/Y2011/V6/I2/325
1 Albeverio S, Oliveira M, Streit L. Intersection local times of independent Brownian motions as generalized white noise functionals. Acta Appl Math , 2001, 69: 221-241
doi: 10.1023/A:1014212906782
2 Ayache A, Wu D, Xiao Y. Joint continuity of the local times of fractional Brownian sheets. Ann Inst H Poin Prob Stat , 2008, 44: 727-748
doi: 10.1214/07-AIHP131
3 Bender C. An It? formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter. Stoch Processes Appl , 2003, 104: 81-106
doi: 10.1016/S0304-4149(02)00212-0
4 Biagini F, Hu Y, Φksendal B, Zhang T. Stochastic Calculus for Fractional Brownian Motion and Applications. London: Springer-Verlag, 2008
5 Drumond C, Oliveira M, Silva J. Intersection local times of fractional Brownian motions with H ∈ (0, 1) as generalized white noise functionals. In: Bernido C C, Bernido M V, eds. 5th Jagna International Workshop Stochastic and Quantum Dynamics of Biomolecular Systems. AIP Conference Proceedings, Vol 1021 . Melville: American Institute of Physics, 2008, 34-45
doi: 10.1063/1.2956798
6 Faria M, Hida T, Streit L, Watanabe H. Intersection local times as generalized white noise functionals. Acta Appl Math , 1997, 46: 351-362
doi: 10.1023/A:1005782030567
7 Guo J, Xiao Y. Multiple intersection local times of fractional Brownian motion. J of Math (to appear)
8 Hu Y. Self-intersection local time of fractional Brownian motions—via chaos expansion. J Math Kyoto Univ , 2001, 41: 233-250
9 Hu Y, Nualart D. Regularity of renormalized self-intersection local time for fractional Brownian motion. Commun Inf Syst , 2007, 7: 21-30
10 Huang Z, Li C. On fractional stable processes and sheets: white noise approach. J Math Anal Appl , 2007, 325: 624-635
doi: 10.1016/j.jmaa.2006.02.020
11 Imkeller P, Yan J. Multiple intersection local time of planar Brownian motion as a particular Hida distribution. J Func Anal , 1996, 140: 256-273
doi: 10.1006/jfan.1996.0107
12 Jiang Y, Wang Y. On the collision local time of fractional Brownian motions. Chin Ann Math , 2007, 28B: 311-320
doi: 10.1007/s11401-006-0029-3
13 Marcus M, Rosen J. Additive functionals of several Lévy processes and intersection local times. Ann Prob , 1999, 27: 1643-1678
14 Nualart D, Ortiz-Latorre S. Intersection local time for two independent fractional Brownian motions. J Theo Prob , 2007, 20: 759-767
doi: 10.1007/s10959-007-0106-x
15 Obata N. White Noise Calculus and Fock Space. Lect Notes in Math, Vol 1577 . Berlin: Springer-Verlag, 1994
16 Oliveira M, Silva J, Streit L. Intersection local times of independent fractional Brownian motions as generalized white noise functionals. Acta Appl Math , 2011, 113: 17-39
doi: 10.1007/s10440-010-9579-1
17 Watanabe H. The local time of self-intersections of Brownian motions as generalized Brownian functionals. Lett in Math Phys , 1991, 23: 1-9
doi: 10.1007/BF01811288
[1] Liping XU, Jiaowan LUO. Global attractiveness and exponential decay of neutral stochastic functional differential equations driven by fBm with Hurst parameter less than 1/2[J]. Front. Math. China, 2018, 13(6): 1469-1487.
[2] Hongshuai DAI, Guangjun SHEN, Lingtao KONG. Limit theorems for functionals of Gaussian vectors[J]. Front. Math. China, 2017, 12(4): 821-842.
[3] Zhenlong CHEN,Dongsheng WU,Yimin XIAO. Smoothness of local times and self-intersection local times of Gaussian random fields[J]. Front. Math. China, 2015, 10(4): 777-805.
[4] Xiliang FAN. Stochastic Volterra equations driven by fractional Brownian motion[J]. Front. Math. China, 2015, 10(3): 595-620.
[5] Zhi LI,Jiaowan LUO. Transportation inequalities for stochastic delay evolution equations driven by fractional Brownian motion[J]. Front. Math. China, 2015, 10(2): 303-321.
[6] Yong REN,Tingting HOU,R. SAKTHIVEL. Non-densely defined impulsive neutral stochastic functional differential equations driven by fBm in Hilbert space with infinite delay[J]. Front. Math. China, 2015, 10(2): 351-365.
[7] Junjun LIAO,Xiangjun WANG. Stability of stochastic differential equation with linear fractal noise[J]. Front. Math. China, 2014, 9(3): 495-507.
[8] Guangjun SHEN, Litan YAN. Asymptotic behavior for bi-fractional regression models via Malliavin calculus[J]. Front Math Chin, 2014, 9(1): 151-179.
[9] Tomás CARABALLO, Mamadou Abdoul DIOP. Neutral stochastic delay partial functional integro-differential equations driven by a fractional Brownian motion[J]. Front Math Chin, 2013, 8(4): 745-760.
[10] Jinqiao DUAN. Stochastic modeling of unresolved scales in complex systems[J]. Front Math Chin, 2009, 4(3): 425-436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed