|
|
|
Schr?dinger-Virasoro type Lie bialgebra: a twisted case |
Huanxia FA1, Yanjie LI1, Junbo LI1,2( ) |
| 1. School of Mathematics and Statistics, Changshu Institute of Technology, Changshu 215500, China; 2. Wu Wen-Tsun Key Laboratory of Mathematics, University of Science and Technology of China, Hefei 230026, China |
|
|
|
|
Abstract In this paper, we investigate Lie bialgebra structures on a twisted Schr?dinger-Virasoro type algebra L. All Lie bialgebra structures on L are triangular coboundary, which is different from the relative result on the original Schr?dinger-Virasoro type Lie algebra. In particular, we find for this Lie algebra that there are more hidden inner derivations from itself to L?L and we develop one method to search them.
|
| Keywords
Lie bialgebra
Yang-Baxter equation
twisted Schr?dinger-Virasoro algebra
|
|
Corresponding Author(s):
LI Junbo,Email:sd_junbo@163.com
|
|
Issue Date: 01 August 2011
|
|
| 1 |
Drinfel’d V G. Constant quasiclassical solutions of the Yang-Baxter quantum equation. Soviet Math Dokl , 1983, 28(3): 667-671
|
| 2 |
Drinfel’d V G. Quantum groups. In: Proceeding of the International Congress of Mathematicians, Berkeley . Providence: Amer Math Soc, 1987, 798-820
|
| 3 |
Fa H, Ding L, Li J. Classification of modules of the intermediate series over a Schr?dinger-Virasoro type. Journal of University of Science and Technology of China , 2010, 40(6): 590-603
|
| 4 |
Gao S, Jiang C, Pei Y. Structure of the extended Schr?dinger-Virasoro Lie algebra. Alg Colloq , 2009, 16(4): 549-566
|
| 5 |
Grunspan C. Quantizations of the Witt algebra and of simple Lie algebras in characteristic p. J Algebra , 2004, 280: 145-161 doi: 10.1016/j.jalgebra.2004.04.016
|
| 6 |
Han J, Li J, Su Y. Lie bialgebra structures on the Schr?dinger-Virasoro Lie algebra. J Math Phys , 2009, 50(8): 083504 doi: 10.1063/1.3187784
|
| 7 |
Henkel M. Schr?dinger invariance and strongly anisotropic critical systems. J Stat Phys , 1994, 75: 1023-1029 doi: 10.1007/BF02186756
|
| 8 |
Hu N, Wang X. Quantizations of generalized-Witt algebra and of Jacobson-Witt algebra in the modular case. J Algebra , 2007, 312: 902-929 doi: 10.1016/j.jalgebra.2007.02.019
|
| 9 |
Li J, Su Y. Representations of the Schr?dinger-Virasoro algebras. J Math Phys , 2008, 49: 053512 doi: 10.1063/1.2924216
|
| 10 |
Li J, Su Y. 2-cocycles of deformative Schr?dinger-Virasoro algebras. arXiv: 801.2210v1
|
| 11 |
Li J, Su Y, Xin B. Lie bialgebras of a family of Block type. Chinese Annals of Math, Ser B , 2008, 29: 487-500
|
| 12 |
Michaelis W. Lie coalgebras. Adv Math , 1980, 38: 1-54 doi: 10.1016/0001-8708(80)90056-0
|
| 13 |
Michaelis W. The dual Poincaré-Birkhoff-Witt theorem. Adv Math , 1985, 57: 93-162 doi: 10.1016/0001-8708(85)90051-9
|
| 14 |
Michaelis W. A class of infinite-dimensional Lie bialgebras containing the Virasoro algebras. Adv Math , 1994, 107: 365-392 doi: 10.1006/aima.1994.1062
|
| 15 |
Ng S, Taft E. Classification of the Lie bialgebra structures on the Witt and Virasoro algebras. J Pure Appl Alg , 2000, 151: 67-88 doi: 10.1016/S0022-4049(99)00045-6
|
| 16 |
Roger C, Unterberger J. The Schr?dinger-Virasoro Lie group and algebra: representation theory and cohomological study. Ann Henri Poincaré , 2006, 7: 1477-1529
|
| 17 |
Song G, Su Y. Lie bialgebras of generalized Witt type. Science in China, Ser A , 2006, 49: 533-544 doi: 10.1007/s11425-006-0533-7
|
| 18 |
Song G, Su Y, Wu Y. Quantization of generalized Virasoro-like algebras. Linear Algebra Appl , 2008, 428: 2888-2899 doi: 10.1016/j.laa.2008.01.020
|
| 19 |
Taft E. Witt and Virasoro algebras as Lie bialgebras. J Pure Appl Alg , 1993, 87: 301-312 doi: 10.1016/0022-4049(93)90116-B
|
| 20 |
Tan S, Zhang X. Automorphisms and Verma modules for generalized Schr?dinger-Virasoro algebras. J Algebra , 2009, 332: 1379-1394 doi: 10.1016/j.jalgebra.2009.05.005
|
| 21 |
Unterberger J. On vertex algebra representations of the Schr?dinger-Virasoro Lie algebra. Nuclear Phys B , 2009, 823(3): 320-371 doi: 10.1016/j.nuclphysb.2009.06.018
|
| 22 |
Wang W, Li J. Derivations and automorphisms of twisted deformative Schr?dinger-Virasoro Lie algebras. arXiv: 1005.5506v1
|
| 23 |
Wu Y, Song G, Su Y. Lie bialgebras of generalized Virasoro-like type. Acta Math Sin (Eng Ser) , 2006, 22: 1915-1922 doi: 10.1007/s10114-005-0742-y
|
| 24 |
Wu Y, Song G, Su Y. Lie bialgebras of generalized Witt type. II. Comm Algebra , 2007, 35(6): 1992-2007 doi: 10.1080/00927870701247187
|
| 25 |
Xin B, Song G, Su Y. Hamiltonian type Lie bialgebras. Science in China, Ser A , 2007, 50: 1267-1279 doi: 10.1007/s11425-007-0078-4
|
| 26 |
Yang H, Su Y. Lie bialgebras structures on the Ramond N = 2 super-Virasoro algebras. Chaos, Solitons and Fractals , 2009, 40(2): 661-671 doi: 10.1016/j.chaos.2007.08.010
|
| 27 |
Yue X, Su Y. Lie bialgebra structures on Lie algebras of generalized Weyl type. Comm Algebra , 2008, 36(4): 1537-1549 doi: 10.1080/00927870701776649
|
| 28 |
Zhang X, Tan S, Lian H. Whittaker modules and a class of new modules similar as Whittaker modules for the Schr?dinger-Virasoro algebra. J Math Phys , 2010, 51(8): 083524 doi: 10.1063/1.3474916
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|