Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2011, Vol. 6 Issue (4) : 641-657    https://doi.org/10.1007/s11464-011-0105-1
RESEARCH ARTICLE
Schr?dinger-Virasoro type Lie bialgebra: a twisted case
Huanxia FA1, Yanjie LI1, Junbo LI1,2()
1. School of Mathematics and Statistics, Changshu Institute of Technology, Changshu 215500, China; 2. Wu Wen-Tsun Key Laboratory of Mathematics, University of Science and Technology of China, Hefei 230026, China
 Download: PDF(200 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we investigate Lie bialgebra structures on a twisted Schr?dinger-Virasoro type algebra L. All Lie bialgebra structures on L are triangular coboundary, which is different from the relative result on the original Schr?dinger-Virasoro type Lie algebra. In particular, we find for this Lie algebra that there are more hidden inner derivations from itself to L?L and we develop one method to search them.

Keywords Lie bialgebra      Yang-Baxter equation      twisted Schr?dinger-Virasoro algebra     
Corresponding Author(s): LI Junbo,Email:sd_junbo@163.com   
Issue Date: 01 August 2011
 Cite this article:   
Huanxia FA,Yanjie LI,Junbo LI. Schr?dinger-Virasoro type Lie bialgebra: a twisted case[J]. Front Math Chin, 2011, 6(4): 641-657.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-011-0105-1
https://academic.hep.com.cn/fmc/EN/Y2011/V6/I4/641
1 Drinfel’d V G. Constant quasiclassical solutions of the Yang-Baxter quantum equation. Soviet Math Dokl , 1983, 28(3): 667-671
2 Drinfel’d V G. Quantum groups. In: Proceeding of the International Congress of Mathematicians, Berkeley . Providence: Amer Math Soc, 1987, 798-820
3 Fa H, Ding L, Li J. Classification of modules of the intermediate series over a Schr?dinger-Virasoro type. Journal of University of Science and Technology of China , 2010, 40(6): 590-603
4 Gao S, Jiang C, Pei Y. Structure of the extended Schr?dinger-Virasoro Lie algebra. Alg Colloq , 2009, 16(4): 549-566
5 Grunspan C. Quantizations of the Witt algebra and of simple Lie algebras in characteristic p. J Algebra , 2004, 280: 145-161
doi: 10.1016/j.jalgebra.2004.04.016
6 Han J, Li J, Su Y. Lie bialgebra structures on the Schr?dinger-Virasoro Lie algebra. J Math Phys , 2009, 50(8): 083504
doi: 10.1063/1.3187784
7 Henkel M. Schr?dinger invariance and strongly anisotropic critical systems. J Stat Phys , 1994, 75: 1023-1029
doi: 10.1007/BF02186756
8 Hu N, Wang X. Quantizations of generalized-Witt algebra and of Jacobson-Witt algebra in the modular case. J Algebra , 2007, 312: 902-929
doi: 10.1016/j.jalgebra.2007.02.019
9 Li J, Su Y. Representations of the Schr?dinger-Virasoro algebras. J Math Phys , 2008, 49: 053512
doi: 10.1063/1.2924216
10 Li J, Su Y. 2-cocycles of deformative Schr?dinger-Virasoro algebras. arXiv: 801.2210v1
11 Li J, Su Y, Xin B. Lie bialgebras of a family of Block type. Chinese Annals of Math, Ser B , 2008, 29: 487-500
12 Michaelis W. Lie coalgebras. Adv Math , 1980, 38: 1-54
doi: 10.1016/0001-8708(80)90056-0
13 Michaelis W. The dual Poincaré-Birkhoff-Witt theorem. Adv Math , 1985, 57: 93-162
doi: 10.1016/0001-8708(85)90051-9
14 Michaelis W. A class of infinite-dimensional Lie bialgebras containing the Virasoro algebras. Adv Math , 1994, 107: 365-392
doi: 10.1006/aima.1994.1062
15 Ng S, Taft E. Classification of the Lie bialgebra structures on the Witt and Virasoro algebras. J Pure Appl Alg , 2000, 151: 67-88
doi: 10.1016/S0022-4049(99)00045-6
16 Roger C, Unterberger J. The Schr?dinger-Virasoro Lie group and algebra: representation theory and cohomological study. Ann Henri Poincaré , 2006, 7: 1477-1529
17 Song G, Su Y. Lie bialgebras of generalized Witt type. Science in China, Ser A , 2006, 49: 533-544
doi: 10.1007/s11425-006-0533-7
18 Song G, Su Y, Wu Y. Quantization of generalized Virasoro-like algebras. Linear Algebra Appl , 2008, 428: 2888-2899
doi: 10.1016/j.laa.2008.01.020
19 Taft E. Witt and Virasoro algebras as Lie bialgebras. J Pure Appl Alg , 1993, 87: 301-312
doi: 10.1016/0022-4049(93)90116-B
20 Tan S, Zhang X. Automorphisms and Verma modules for generalized Schr?dinger-Virasoro algebras. J Algebra , 2009, 332: 1379-1394
doi: 10.1016/j.jalgebra.2009.05.005
21 Unterberger J. On vertex algebra representations of the Schr?dinger-Virasoro Lie algebra. Nuclear Phys B , 2009, 823(3): 320-371
doi: 10.1016/j.nuclphysb.2009.06.018
22 Wang W, Li J. Derivations and automorphisms of twisted deformative Schr?dinger-Virasoro Lie algebras. arXiv: 1005.5506v1
23 Wu Y, Song G, Su Y. Lie bialgebras of generalized Virasoro-like type. Acta Math Sin (Eng Ser) , 2006, 22: 1915-1922
doi: 10.1007/s10114-005-0742-y
24 Wu Y, Song G, Su Y. Lie bialgebras of generalized Witt type. II. Comm Algebra , 2007, 35(6): 1992-2007
doi: 10.1080/00927870701247187
25 Xin B, Song G, Su Y. Hamiltonian type Lie bialgebras. Science in China, Ser A , 2007, 50: 1267-1279
doi: 10.1007/s11425-007-0078-4
26 Yang H, Su Y. Lie bialgebras structures on the Ramond N = 2 super-Virasoro algebras. Chaos, Solitons and Fractals , 2009, 40(2): 661-671
doi: 10.1016/j.chaos.2007.08.010
27 Yue X, Su Y. Lie bialgebra structures on Lie algebras of generalized Weyl type. Comm Algebra , 2008, 36(4): 1537-1549
doi: 10.1080/00927870701776649
28 Zhang X, Tan S, Lian H. Whittaker modules and a class of new modules similar as Whittaker modules for the Schr?dinger-Virasoro algebra. J Math Phys , 2010, 51(8): 083524
doi: 10.1063/1.3474916
[1] Haibo CHEN, Xiansheng DAI, Hengyun YANG. Lie bialgebra structures on generalized loop Schrödinger-Virasoro algebras[J]. Front. Math. China, 2019, 14(2): 239-260.
[2] Xiaomin TANG, Lijuan LIU, Jinli XU. Lie bialgebra structures on derivation Lie algebra over quantum tori[J]. Front. Math. China, 2017, 12(4): 949-965.
[3] Xiaojun CHEN,Hai-Long HER,Shanzhong SUN. Lie bialgebra structure on cyclic cohomology of Fukaya categories[J]. Front. Math. China, 2015, 10(5): 1057-1085.
[4] Dongping HOU, Chengming BAI. J-dendriform algebras[J]. Front Math Chin, 2012, 7(1): 29-49.
[5] Yucai SU, Lamei YUAN. Quantization of Schr?dinger-Virasoro Lie algebra[J]. Front Math Chin, 2010, 5(4): 701-715.
[6] Hengyun YANG. Lie super-bialgebra structures on super-Virasoro algebra[J]. Front Math Chin, 2009, 4(2): 365-379.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed