Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2011, Vol. 6 Issue (3) : 449-472    https://doi.org/10.1007/s11464-011-0112-2
RESEARCH ARTICLE
Ergodicity of transition semigroups for stochastic fast diffusion equations
Wei LIU()
Fakult?t für Mathematik, Universit?t Bielefeld, D-33501 Bielefeld, Germany
 Download: PDF(263 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we first show the uniqueness of invariant measures for the stochastic fast diffusion equation, which follows from an obtained new decay estimate. Then we establish the Harnack inequality for the stochastic fast diffusion equation with nonlinear perturbation in the drift and derive the heat kernel estimate and ultrabounded property for the associated transition semigroup. Moreover, the exponential ergodicity and the existence of a spectral gap are also investigated.

Keywords Harnack inequality      invariant measure      ergodicity      fast diffusion equation      heat kernel      spectral gap     
Corresponding Author(s): LIU Wei,Email:wei.liu@uni-bielefeld.de   
Issue Date: 01 June 2011
 Cite this article:   
Wei LIU. Ergodicity of transition semigroups for stochastic fast diffusion equations[J]. Front Math Chin, 2011, 6(3): 449-472.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-011-0112-2
https://academic.hep.com.cn/fmc/EN/Y2011/V6/I3/449
1 Arnaudon M, Thalmaier A, Wang F Y. Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below. Bull Sci Math , 2006, 130: 223-233
doi: 10.1016/j.bulsci.2005.10.001
2 Barbu V, Da Prato G. Invariant measures and the Kolmogorov equation for the stochastic fast diffusion equation. Stoc Proc Appl , 2010, 120: 1247-1266
doi: 10.1016/j.spa.2010.03.007
3 Bendikov A, Maheux P. Nash type inequalities for fractional powers of nonnegative self-adjoint operators. Trans Amer Math Soc , 2007, 359: 3085-3097
doi: 10.1090/S0002-9947-07-04020-2
4 Bogachev V I, Da Prato G, R?ckner M. Invariant measures of generalized stochastic porous medium equations. Dokl Math , 2004, 69: 321-325
5 Bogachev V I, R?ckner M, Zhang T S. Existence and uniqueness of invariant measures: an approach via sectorial forms. Appl Math Optim , 2000, 41: 87-109
doi: 10.1007/s002459911005
6 Croke C B. Some isoperimetric inequalities and eigenvalue estimates. Ann Sci éc Norm Super , 1980, 13: 419-435
7 Da Prato G, R?ckner M, Rozovskii B L, Wang F Y. Strong solutions to stochastic generalized porous media equations: existence, uniqueness and ergodicity. Comm Part Diff Equ , 2006, 31: 277-291
doi: 10.1080/03605300500357998
8 Da Prato G, R?ckner M, Wang F Y. Singular stochastic equations on Hilbert spaces: Harnack inequalities for their transition semigroups. J Funct Anal , 2009, 257: 992-1017
doi: 10.1016/j.jfa.2009.01.007
9 Da Prato G, Zabczyk J. Ergodicity for Infinite-dimensional Systems. London Mathematical Society Lecture Note Series, 229 . Cambridge: Cambridge University Press, 1996
10 Daskalopoulos P, Kenig C E. Degenerate Diffusions: Initial Value Problems and Local Regularity Theory. EMS Tracts in Mathematics 1. Zürich: European Mathematical Society , 2007
doi: 10.4171/033
11 Doob J L. Asymptotics properties of Markov transition probabilities. Trans Amer Math Soc , 1948, 63: 393-421
12 Driver B, Gordina M. Integrated Harnack inequalities on Lie groups. J Diff Geom , 2009, 83: 501-550
13 Gess B, Liu W, R?ckner M. Random attractors for a class of stochastic partial differential equations driven by general additive noise. J Differential Equations , 2011,
doi: 10.1016/j.jde.2011.02.013
14 Goldys B, Maslowski B. Exponential ergodicity for stochastic reaction-diffusion equations. In: Lecture Notes Pure Appl Math , Vol 245. Boca Raton: Chapman Hall/CRC Press, 2004, 115-131
15 Goldys B, Maslowski B. Lower estimates of transition densities and bounds on exponential ergodicity for stochastic PDE’s. Ann Probab , 2006, 34: 1451-1496
doi: 10.1214/009117905000000800
16 Gong F Z, Wang F Y. Heat kernel estimates with application to compactness of manifolds. Q J Math , 2001, 52(2): 171-180
doi: 10.1093/qjmath/52.2.171
17 Gy?ngy I. On stochastic equations with respect to semimartingale III. Stochastics , 1982, 7: 231-254
doi: 10.1080/17442508208833220
18 Hairer M. Coupling stochastic PDEs. In: XIVth International Congress on Mathematical Physics , 2005, 281-289
19 Krylov N V, Rozovskii B L. Stochastic evolution equations. Translated from Itogi Naukii Tekhniki, Seriya Sovremennye Problemy Matematiki , 1979, 14: 71-146
20 Liu W. Harnack inequality and applications for stochastic evolution equations with monotone drifts. J Evol Equ , 2009, 9: 747-770
doi: 10.1007/s00028-009-0032-8
21 Liu W. On the stochastic p-Laplace equation. J Math Anal Appl , 2009, 360: 737-751
doi: 10.1016/j.jmaa.2009.07.020
22 Liu W. Large deviations for stochastic evolution equations with small multiplicative noise. Appl Math Optim , 2010, 61: 27-56
doi: 10.1007/s00245-009-9072-2
23 Liu W, R?ckner M. SPDE in Hilbert space with locally monotone coefficients. J Funct Anal , 2010, 259: 2902-2922
doi: 10.1016/j.jfa.2010.05.012
24 Liu W, T?lle J M. Existence and uniqueness of invariant measures for stochastic evolution equations with weakly dissipative drifts. Preprint
25 Liu W, Wang F Y. Harnack inequality and Strong Feller property for stochastic fast diffusion equations. J Math Anal Appl , 2008, 342: 651-662
doi: 10.1016/j.jmaa.2007.12.047
26 Pardoux E. Equations aux dérivées partielles stochastiques non linéaires monotones. Thesis, Université Paris XI , 1975
27 Pardoux E. Stochastic partial differential equations and filtering of diffusion processes. Stochastics , 1979, 3: 127-167
doi: 10.1080/17442507908833142
28 Ren J, R?ckner M, Wang F Y. Stochastic generalized porous media and fast diffusion equations. J Differential Equations , 2007, 238: 118-152
doi: 10.1016/j.jde.2007.03.027
29 R?ckner M, Wang F Y. Non-monotone stochastic porous media equation. J Differential Equations , 2008, 245: 3898-3935
doi: 10.1016/j.jde.2008.03.003
30 Seidler J. Ergodic behaviour of stochastic parabolic equations. Czechoslovak Math J , 1997, 47: 277-316
doi: 10.1023/A:1022821729545
31 Vázquez J L. Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Oxford Lecture Notes in Mathematics and Its Applications , Vol 33. Oxford: Oxford University Press, 2006
doi: 10.1093/acprof:oso/9780199202973.001.0001
32 Wang F Y. Functional inequalities, semigroup properties and spectrum estimates. Infin Dimens Anal Quant Probab Relat Top , 2000, 3: 263-295
33 Wang F Y. Dimension-free Harnack inequality and its applications. Front Math China , 2006, 1: 53-72
doi: 10.1007/s11464-005-0021-3
34 Wang F Y. Harnack inequality and applications for stochastic generalized porous media equations. Ann Probab , 2007, 35: 1333-1350
doi: 10.1214/009117906000001204
35 Wang F Y. Harnack Inequalities on Manifolds with Boundary and Applications. J Math Pures Appl , 2010, 94: 304-321
doi: 10.1016/j.matpur.2010.03.001
36 Zhang X. On stochastic evolution equations with non-Lipschitz coefficients. Stoch Dyn , 2009, 9: 549-595
doi: 10.1142/S0219493709002774
[1] Yuhui ZHANG. Moments of first hitting times for birth-death processes on trees[J]. Front. Math. China, 2019, 14(4): 833-854.
[2] Yuhui ZHANG. Criteria on ergodicity and strong ergodicity of single death processes[J]. Front. Math. China, 2018, 13(5): 1215-1243.
[3] Yuanyuan LIU, Yanhong SONG. Integral-type functionals of first hitting times for continuous-time Markov chains[J]. Front. Math. China, 2018, 13(3): 619-632.
[4] Shaoqin ZHANG. Shift Harnack inequality and integration by parts formula for semilinear stochastic partial differential equations[J]. Front. Math. China, 2016, 11(2): 461-496.
[5] Yue HE. Sharp lower bound of spectral gap for Schrödinger operator and related results[J]. Front. Math. China, 2015, 10(6): 1283-1312.
[6] Yuanyuan LIU,Yuhui ZHANG. Central limit theorems for ergodic continuous-time Markov chains with applications to single birth processes[J]. Front. Math. China, 2015, 10(4): 933-947.
[7] Zhen-Qing CHEN,Yan-Xia REN,Renming SONG,Rui ZHANG. Strong law of large numbers for supercritical superprocesses under second moment condition[J]. Front. Math. China, 2015, 10(4): 807-838.
[8] Junping LI,Xiangxiang HUANG,Juan WANG,Lina ZHANG. Recurrence and decay properties of a star-typed queueing model with refusal[J]. Front. Math. China, 2015, 10(4): 917-932.
[9] Lina ZHANG,Junping LI. Decay properties of Markovian bulk-arrival and bulk-service queues with state-independent control[J]. Front. Math. China, 2014, 9(4): 983-1000.
[10] Mu-Fa CHEN,Yuhui ZHANG. Unified representation of formulas for single birth processes[J]. Front. Math. China, 2014, 9(4): 761-796.
[11] Yong LIU, Jianglun WU, Fengxia YANG, Jianliang ZHAI. An ergodic theorem of a parabolic Anderson model driven by Lévy noise[J]. Front Math Chin, 2011, 6(6): 1147-1183.
[12] Yue WANG. Gradient estimates and Harnack inequalities for diffusion equation on Riemannian manifolds[J]. Front Math Chin, 2010, 5(4): 727-746.
[13] Jian WANG, . Logarithmic Sobolev inequality and strong ergodicity for birth-death processes[J]. Front. Math. China, 2009, 4(4): 721-726.
[14] Yonghua MAO, Lianghui XIA. Spectral gap for jump processes by decomposition method[J]. Front Math Chin, 2009, 4(2): 335-347.
[15] Mu-Fa Chen. Exponential convergence rate in entropy[J]. Front. Math. China, 2007, 2(3): 329-358.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed