Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2011, Vol. 6 Issue (6) : 1265-1284    https://doi.org/10.1007/s11464-011-0128-7
RESEARCH ARTICLE
Saddlepoint approximation for moments of random variables
Kai ZHAO1, Xue CHENG1,2(), Jingping YANG1,2
1. Department of Financial Mathematics, Center for Statistical Science, Peking University, Beijing 100871, China; 2. Key Lab of Mathematics and Applied Mathematics (Peking University), Ministry of Education, Beijing 100871, China
 Download: PDF(236 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we introduce a saddlepoint approximation method for higher-order moments like E(S-a)+m, a>0, where the random variable S in these expectations could be a single random variable as well as the average or sum of some i.i.d random variables, and a>0 is a constant. Numerical results are given to show the accuracy of this approximation method.

Keywords Saddlepoint approximation      higher moments      sum of i.i.d. random variables     
Corresponding Author(s): CHENG Xue,Email:chengxue@math.pku.edu.cn   
Issue Date: 01 December 2011
 Cite this article:   
Kai ZHAO,Xue CHENG,Jingping YANG. Saddlepoint approximation for moments of random variables[J]. Front Math Chin, 2011, 6(6): 1265-1284.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-011-0128-7
https://academic.hep.com.cn/fmc/EN/Y2011/V6/I6/1265
1 Barndorff-Nielsen O, Cox D R. Edgeworth and saddle-point approximations with statistical applications. J R Statist Soc B , 1979, 41(3): 279-312
2 Butler R W. Saddle-point Approximations with Applications. Cambridge: Cambridge University Press, 2007
doi: 10.1017/CBO9780511619083
3 Daniels H E. Saddlepoint approximations in statistics. Ann Math Statist , 1954, 25: 631-650
doi: 10.1214/aoms/1177728652
4 Daniels H E. Tail probability approximations. Internat Statist Rev , 1987, 55(1): 37-88
doi: 10.2307/1403269
5 Embrechts P, Lindskog F, McNeil A. Modelling dependence with copulas and applications to risk management. In: Rachev S, ed. Handbook of Heavy Tailed Distributions in Finance . Amsterdam: Elsevier, 2003
doi: 10.1016/B978-044450896-6.50010-8
6 Gordy M. Saddlepoint approximation of credit risk. J Banking Finance 2002, 26: 1335-1353
doi: 10.1016/S0378-4266(02)00266-2
7 Huang X. Higher-order saddlepoint approximations in the Vasicek portfolio credit loss model. J Comput Finance , 2009, 11(1): 93-113
8 Huang X, Oosterlee C W. Saddlepoint approximations for expectations. Preprint , 2009
9 Kaas R, Goovaerts M, Dhaene J, Denuit M. Modern Actuarial Risk Theory. London: Kluwer Academic Publishers, 2001
10 Lugannani R, Rice S. Saddlepoint approximation for the distribution of the sum of independent random variables. Adv Appl Probab , 1980, 12: 475-490
doi: 10.2307/1426607
11 Martin R, Thompson K, Browne C. Taking to the saddle. In: Gordy M, ed. Credit Risk Modelling: The Cutting-edge Collection . London: Riskbooks, 2003
12 Reid N. Saddlepoint methods and Statistical Inference. Stat Sci , 1988, 3(2): 213-238
doi: 10.1214/ss/1177012906
13 Rogers L C G, Zane O. Saddlepoint approximations to option prices. Ann Appl Probab , 1999, 9(2): 493-503
doi: 10.1214/aoap/1029962752
14 Studer M. Stochastic Taylor Expansions and Saddlepoint Approximations for Risk Management. . Zürich: ETH Zürich, 2001
15 Yang Jingping, Hurd Tom, Zhang Xuping. Saddlepoint approximation method for pricing CDOs. J Comput Finance , 2006, 10(1): 1-20
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed