?-basis," /> ?-basis,"/> ?-basis,"/>
Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2012, Vol. 7 Issue (4) : 679-693    https://doi.org/10.1007/s11464-011-0146-5
RESEARCH ARTICLE
Cluster characters for cyclic quivers
Ming DING1, Fan XU2()
1. School of Mathematical Sciences, Nankai University, Tianjin 300071, China; 2. Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
 Download: PDF(185 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We define an analogue of the Caldero-Chapoton map for the cluster category of finite-dimensional nilpotent representations over a cyclic quiver. We prove that it is a cluster character and satisfies some inductive formulas for the multiplication between the generalized cluster variables (the images of objects of the cluster category under this map). Moreover, we construct a ?-basis for the algebra generated by all generalized cluster variables.

Keywords Cyclic quiver      cluster algebra      ?-basis')" href="#">?-basis     
Corresponding Author(s): XU Fan,Email:fanxu@mail.tsinghua.edu.cn   
Issue Date: 01 August 2012
 Cite this article:   
Ming DING,Fan XU. Cluster characters for cyclic quivers[J]. Front Math Chin, 2012, 7(4): 679-693.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-011-0146-5
https://academic.hep.com.cn/fmc/EN/Y2012/V7/I4/679
1 Buan A, Marsh R, Reineke M, Reiten I, Todorov G. Tilting theory and cluster combinatorics. Adv Math , 2006, 204: 572-618
doi: 10.1016/j.aim.2005.06.003
2 Buan A, Marsh R, Vatne D. Cluster structure from 2-Calabi-Yau categories with loops. Math Z , 2010, 265(4): 951-970
doi: 10.1007/s00209-009-0549-0
3 Caldero P, Chapoton F. Cluster algebras as Hall algebras of quiver representations. Comm Math Helv , 2006, 81: 595-616
doi: 10.4171/CMH/65
4 Caldero P, Keller B. From triangulated categories to cluster algebras. Invent Math , 2008, 172(1): 169-211
doi: 10.1007/s00222-008-0111-4
5 Ding M, Xiao J, Xu F. Integral bases of cluster algebras and representations of tame quivers. Algebr Represent Theor (to appear) .
doi: 10.1007/s10468-011-9317-z pmid:. ArXiv: 0901.1937 [math.RT]
6 Fomin S, Zelevinsky A. Cluster algebras. I. Foundations. J Amer Math Soc , 2002, 15(2): 497-529
doi: 10.1090/S0894-0347-01-00385-X
7 Keller B. On triangulated orbit categories. Documenta Math , 2005, 10: 551-581
8 Marsh R, Reineke M, Zelevinsky A. Generalized associahedra via quiver representations. Trans Amer Math Soc , 2003, 355(1): 4171-4186
doi: 10.1090/S0002-9947-03-03320-8
9 Palu Y. Cluster characters for 2-Calabi–Yau triangulated categories. Ann Inst Fourier , 2008, 58(6): 2221-2248
doi: 10.5802/aif.2412
10 Ringel C M. Tame Algebras and Integral Quadratic Forms. Lecture Notes in Mathematics, Vol 1099. Berlin: Springer, 1984
11 Xiao J, Xu F. Green’s formula with ?*-action and Caldero-Keller’s formula. Prog Math (to appear)
12 Zhou Y, Zhu B. Cluster algebras of type C via cluster tubes. ArXiv: 1008.3444v1 [math.RT]
[1] Ming DING. On quantum cluster algebras of finite type[J]. Front Math Chin, 2011, 6(2): 231-240.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed