|
|
|
Cluster characters for cyclic quivers |
Ming DING1, Fan XU2( ) |
| 1. School of Mathematical Sciences, Nankai University, Tianjin 300071, China; 2. Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China |
|
|
|
|
Abstract We define an analogue of the Caldero-Chapoton map for the cluster category of finite-dimensional nilpotent representations over a cyclic quiver. We prove that it is a cluster character and satisfies some inductive formulas for the multiplication between the generalized cluster variables (the images of objects of the cluster category under this map). Moreover, we construct a ?-basis for the algebra generated by all generalized cluster variables.
|
| Keywords
Cyclic quiver
cluster algebra
?-basis')" href="#">?-basis
|
|
Corresponding Author(s):
XU Fan,Email:fanxu@mail.tsinghua.edu.cn
|
|
Issue Date: 01 August 2012
|
|
| 1 |
Buan A, Marsh R, Reineke M, Reiten I, Todorov G. Tilting theory and cluster combinatorics. Adv Math , 2006, 204: 572-618 doi: 10.1016/j.aim.2005.06.003
|
| 2 |
Buan A, Marsh R, Vatne D. Cluster structure from 2-Calabi-Yau categories with loops. Math Z , 2010, 265(4): 951-970 doi: 10.1007/s00209-009-0549-0
|
| 3 |
Caldero P, Chapoton F. Cluster algebras as Hall algebras of quiver representations. Comm Math Helv , 2006, 81: 595-616 doi: 10.4171/CMH/65
|
| 4 |
Caldero P, Keller B. From triangulated categories to cluster algebras. Invent Math , 2008, 172(1): 169-211 doi: 10.1007/s00222-008-0111-4
|
| 5 |
Ding M, Xiao J, Xu F. Integral bases of cluster algebras and representations of tame quivers. Algebr Represent Theor (to appear) . doi: 10.1007/s10468-011-9317-z pmid:. ArXiv: 0901.1937 [math.RT]
|
| 6 |
Fomin S, Zelevinsky A. Cluster algebras. I. Foundations. J Amer Math Soc , 2002, 15(2): 497-529 doi: 10.1090/S0894-0347-01-00385-X
|
| 7 |
Keller B. On triangulated orbit categories. Documenta Math , 2005, 10: 551-581
|
| 8 |
Marsh R, Reineke M, Zelevinsky A. Generalized associahedra via quiver representations. Trans Amer Math Soc , 2003, 355(1): 4171-4186 doi: 10.1090/S0002-9947-03-03320-8
|
| 9 |
Palu Y. Cluster characters for 2-Calabi–Yau triangulated categories. Ann Inst Fourier , 2008, 58(6): 2221-2248 doi: 10.5802/aif.2412
|
| 10 |
Ringel C M. Tame Algebras and Integral Quadratic Forms. Lecture Notes in Mathematics, Vol 1099. Berlin: Springer, 1984
|
| 11 |
Xiao J, Xu F. Green’s formula with ?*-action and Caldero-Keller’s formula. Prog Math (to appear)
|
| 12 |
Zhou Y, Zhu B. Cluster algebras of type C via cluster tubes. ArXiv: 1008.3444v1 [math.RT]
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|