Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    0, Vol. Issue () : 29-49    https://doi.org/10.1007/s11464-011-0160-7
RESEARCH ARTICLE
J-dendriform algebras
Dongping HOU1,2, Chengming BAI1()
1. Chern Institute of Mathematics & LPMC, Nankai University, Tianjin 300071, China; 2. Department of Mathematics, Yunnan Normal University, Kunming 650092, China
 Download: PDF(207 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we introduce a notion of J-dendriform algebra with two operations as a Jordan algebraic analogue of a dendriform algebra such that the anticommutator of the sum of the two operations is a Jordan algebra. A dendriform algebra is a J-dendriform algebra. Moreover, J-dendriform algebras fit into a commutative diagram which extends the relationships among associative, Lie, and Jordan algebras. Their relations with some structures such as Rota-Baxter operators, classical Yang-Baxter equation, and bilinear forms are given.

Keywords Jordan algebra      dendriform algebra      O-operator      classical Yang-Baxter equation (CYBE)     
Corresponding Author(s): BAI Chengming,Email:baicm@nankai.edu.cn   
Issue Date: 01 February 2012
 Cite this article:   
Dongping HOU,Chengming BAI. J-dendriform algebras[J]. Front Math Chin, 0, (): 29-49.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-011-0160-7
https://academic.hep.com.cn/fmc/EN/Y0/V/I/29
1 Aguiar M. Pre-Poisson algebras. Lett Math Phys , 2000, 54: 263-277
doi: 10.1023/A:1010818119040
2 Aguiar M, Loday J -L. Quadri-algebras. J Pure Appl Algebra , 2004, 191: 205-221
doi: 10.1016/j.jpaa.2004.01.002
3 Albert A A. On a certain algebra of quantum mechanics. Ann Math , 1934, 35: 65-73
doi: 10.2307/1968118
4 Albert A A. A structure theory for Jordan algebras. Ann Math , 1947, 48: 446-467
doi: 10.2307/1969128
5 Bai C M. A unified algebraic approach to the classical Yang-Baxter equation. J Phys A: Math Theor , 2007, 40: 11073-11082
doi: 10.1088/1751-8113/40/36/007
6 Bai C M. O-operators of Loday algebras and analogues of the classical Yang-Baxter equation. Comm Algebra , 2010, 38: 4277-4321
doi: 10.1080/00927870903366876
7 Bai C M, Liu L G, Ni X. Some results on L-dendriform algebras. J Geom Phys , 2010, 60: 940-950
doi: 10.1016/j.geomphys.2010.02.007
8 Baxter G. An analytic problem whose solution follows from a simple algebraic identity. Pacific J Math , 1960, 10: 731-742
9 Burde D. Left-symmetric algebras, or pre-Lie algebras in geometry and physics. Cent Eur J Math , 2006, 4: 323-357
doi: 10.2478/s11533-006-0014-9
10 Chapoton F. Un théorème de Cartier-Milnor-Moore-Quillen pour les bigèbres dendriformes et les algèbres braces. J Pure Appl Algebra , 2002, 168: 1-18
doi: 10.1016/S0022-4049(01)00052-4
11 Chari V, Pressley A. A Guide to Quantum Groups. Cambridge: Cambridge University Press, 1994
12 Chu B Y. Symplectic homogeneous spaces. Trans Amer Math Soc , 1974, 197: 145-159
doi: 10.1090/S0002-9947-1974-0342642-7
13 Ebrahimi-Fard K, Guo L. On products and duality of binary, quadratic, regular operads. J Pure Appl Algebra , 2005, 200: 293-317
doi: 10.1016/j.jpaa.2004.12.020
14 Foissy L. Les algèbres de Hopf des arbres enracinés décorés II. Bull Sci Math , 2002, 126: 249-288
doi: 10.1016/S0007-4497(02)01113-2
15 Frabetti A. Dialgebra homology of associative algebras. C R Acad Sci Paris , 1997, 325: 135-140
16 Frabetti A. Leibniz homology of dialgebras of matrices. J Pure Appl Algebra , 1998, 129: 123-141
doi: 10.1016/S0022-4049(97)00066-2
17 Golubschik I Z, Sokolov V V. Generalized operator Yang-Baxter equations, integrable ODEs and nonassociative algebras. J Nonlinear Math Phys , 2000, 7: 184-197
doi: 10.2991/jnmp.2000.7.2.8
18 Guo L. What is a Rota-Baxter algebra. Notice Amer Math Soc , 2009, 56: 1436-1437
19 Guo L. An Introduction to Rota-Baxter Algebra. http://andromeda.rutgers.edu/ liguo/rbabook.pdf.
20 Hou D P, Ni X, Bai C M. Pre-Jordan algebras. Math Scand (to appear)
21 Iordanescu R. Jordan structures in geometry and physics. Bucarest: Editura Academiei Romane, 2003
22 Jacobson N. Lie and Jordan triple systems. Amer J Math , 1949, 71: 149-170
doi: 10.2307/2372102
23 Jacobson N. Structure and Representation of Jordan Algebras. Amer Math Soc Colloq Publ, 39 . Providence: Amer Math Soc, 1968
24 Kaup W, Zaitsev D. On symmetric Cauchy-Riemann manifolds. Adv Math , 2000, 149: 145-181
doi: 10.1006/aima.1999.1863
25 Koecher M. Imbedding of Jordan algebras into Lie algebras I. Amer J Math , 1967, 89: 787-816
doi: 10.2307/2373242
26 Koecher M. Jordan algebras and differential geometry. Actes Congrès Intern Math , 1970, 1: 279-283
27 Kupershmidt B A. What a classical r-matrix really is. J Nonlinear Math Phys , 1999, 6: 448-488
doi: 10.2991/jnmp.1999.6.4.5
28 Loday J -L. Dialgebras, in Dialgebras and related operads. Lect Notes Math , 2002, 1763: 7-66
29 Loday J -L. Arithmetree. J Algebra , 2002, 258: 275-309
doi: 10.1016/S0021-8693(02)00510-0
30 Loday J -L. Scindement d’associativité et algèbres de Hopf. In: Proceedings of the Conference in Honor of Jean Leray, Nantes, 2002. Séminaire et Congrès (SMF) , 2004, 9: 155-172
31 Loday J -L, Ronco M. Hopf algebra of the planar binary trees. Adv Math , 1998, 139: 293-309
doi: 10.1006/aima.1998.1759
32 Loday J -L, Ronco M. Algèbre de Hopf colibres. C R Acad Sci Paris , 2003, 337: 153-158
doi: 10.1016/S1631-073X(03)00288-7
33 Ronco M. Primitive elements in a free dendriform algebra. Comtep Math , 2000, 267: 245-263
34 Rota G -C. Baxter algebras and combinatorial identities I. Bull Amer Math Soc , 1969, 75: 325-329
doi: 10.1090/S0002-9904-1969-12156-7
35 Semenov-Tian-Shansky M A. What is a classical R-matrix? Funct Anal Appl , 1983, 17: 259-272
doi: 10.1007/BF01076717
36 Upmeier H. Jordan algebras and harmonic analysis on symmetric spaces. Amer J Math , 1986, 108: 1-25
doi: 10.2307/2374466
37 Vallette B. Manin products, Koszul duality, Loday algebras and Deligne conjecture. J Reine Angew Math , 2008, 620: 105-164
doi: 10.1515/CRELLE.2008.051
38 Zhelyabin V N. Jordan bialgebras and their connection with Lie bialgebras. Algebra i Logika , 1997, 36: 3-35 (in Russian); Algebra and Logic, 1997, 36: 1-15 (in English)
doi: 10.1007/BF02671949
39 Zhelyabin V N. On a class of Jordan D-bialgebras. Algebra i Analiz , 1999, 11(4): 64-94 (in Russian); St Petersburg Math J, 2000, 11(4): 589-609 (in English)
40 Zhelyabin V N. Jordan D-bialgebras and symplectic form on Jordan algebras. Siberian Adv Math , 2000, 10(2): 142-150
[1] Peng LEI, Li GUO. Nijenhuis algebras, NS algebras, and N-dendriform algebras[J]. Front Math Chin, 2012, 7(5): 827-846.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed