L2(?d)" /> L2(?d)" /> L2(?d)" />
Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2012, Vol. 7 Issue (1) : 177-195    https://doi.org/10.1007/s11464-011-0161-6
RESEARCH ARTICLE
Construction of a class of multivariate compactly supported wavelet bases for L2(?d)
Fengying ZHOU, Yunzhang LI()
College of Applied Sciences, Beijing University of Technology, Beijing 100124, China
 Download: PDF(210 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, for a given d×d expansive matrix M with |det M| = 2, we investigate the compactly supported M-wavelets for L2(?d). Starting with a pair of compactly supported refinable functions ? and ? ? satisfying a mild condition, we obtain an explicit construction of a compactly supported wavelet ψ such that {2j/2ψ(Mj·-k):j?, k?d} forms a Riesz basis for L2(?d). The (anti-)symmetry of such ψ is studied, and some examples are also provided.

Keywords Riesz basis      wavelet      refinable function     
Corresponding Author(s): LI Yunzhang,Email:yzlee@bjut.edu.cn   
Issue Date: 01 February 2012
 Cite this article:   
Fengying ZHOU,Yunzhang LI. Construction of a class of multivariate compactly supported wavelet bases for L2(?d)[J]. Front Math Chin, 2012, 7(1): 177-195.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-011-0161-6
https://academic.hep.com.cn/fmc/EN/Y2012/V7/I1/177
1 de Boor C, DeVore R A, Ron A. On the construction of multivariate (pre)wavelets. Constr Approx , 1993, 9(2-3): 123-166
doi: 10.1007/BF01198001
2 Bownik M. Intersection of dilates of shift-invariant spaces. Proc Amer Math Soc , 2009, 137(2): 563-572
doi: 10.1090/S0002-9939-08-09682-2
3 Chui C K. An Introduction to Wavelets. Boston: Academic Press, 1992
4 Chui C K, Wang J Z. A general framework of compactly supported splines and wavelets. J Approx Theory , 1992, 71(3): 263-304
doi: 10.1016/0021-9045(92)90120-D
5 Chui C K, Wang J Z. On compactly supported spline wavelets and a duality principle. Trans Amer Math Soc , 1992, 330(2): 903-915
doi: 10.2307/2153941
6 Cohen A, Daubechies I. A stability criterion for biorthogonal wavelet bases and their related subband coding scheme. Duke Math J , 1992, 68(2): 313-335
doi: 10.1215/S0012-7094-92-06814-1
7 Cohen A, Daubechies I, Feauveau J C. Biorthogonal bases of compactly supported wavelets. Comm Pure Appl Math , 1992, 45(5): 485-560
doi: 10.1002/cpa.3160450502
8 Eugenio H, Weiss G. A First Course on Wavelets. Boca Raton: CRC Press, 1996
9 Huang Y D, Yang S Z, Cheng Z X. The construction of a class of trivariate nonseparable compactly supported wavelets. Int J Wavelets Multiresolut Inf Process , 2009, 7(3): 255-267
doi: 10.1142/S0219691309002908
10 Jia R Q. Approximation properties of multivariate wavelets. Math Comp , 1998, 67(222): 647-665
doi: 10.1090/S0025-5718-98-00925-9
11 Jia R Q. Bessel sequences in Sobolev spaces. Appl Comput Harmon Anal , 2006, 20(2): 298-311
doi: 10.1016/j.acha.2005.11.001
12 Jia R Q, Lau K S, Zhou D X. Lp solutions of refinement equations. J Fourier Anal Appl , 2001, 7(2): 143-167
doi: 10.1007/BF02510421
13 Jia R Q, Micchelli C A. Using the refinement equations for the construction of pre-wavelets, II Powers of two. In: Curves and Surfaces . Boston: Academic Press, 1991, 209-246
14 Jia R Q, Wang J Z, Zhou D X. Compactly supported wavelet bases for Sobolev spaces. Appl Comput Harmon Anal , 2003, 15(3): 224-241
doi: 10.1016/j.acha.2003.08.003
15 Li Y Z. On the construction of a class of bidimensional nonseparable compactly supported wavelets. Proc Amer Math Soc , 2005, 133(12): 3505-3513
doi: 10.1090/S0002-9939-05-07911-6
16 Long R L, High Dimensional Wavelet Analysis. Beijing: World Book Publishing Corporation, 1995 (in Chinese)
17 Micchelli C A. Using the refinement equation for the construction of pre-wavelets. Numer Algorithms , 1991, 1(1): 75-116
doi: 10.1007/BF02145583
18 Rudin W. Functional Analysis. New York: McGraw-Hill, Inc, 1991
19 Schoenberg I J. Cardinal Spline Interpolation. Philadelphia: SIAM, 1973
doi: 10.1137/1.9781611970555
20 Villemoes L F. Sobolev regularity of wavelets and stability of iterated filter banks. In: Progress in Wavelet Analysis and Applications . Gif-sur-Yvette: Fronti`eres, 1993, 243-251
[1] Xing FU. Equivalent characterizations of Hardy spaces with variable exponent via wavelets[J]. Front. Math. China, 2019, 14(4): 737-759.
[2] Yan FENG,Shouzhi YANG. Construction of two-direction tight wavelet frames[J]. Front. Math. China, 2014, 9(6): 1293-1308.
[3] Junlian XU. Wavelet linear estimations of density derivatives from a negatively associated stratified size-biased sample[J]. Front. Math. China, 2014, 9(3): 623-640.
[4] Dayong LU, Dengfeng LI. Construction of periodic wavelet frames with dilation matrix[J]. Front Math Chin, 2014, 9(1): 111-134.
[5] ZHAO Jiman, PENG Lizhong. Quaternion-valued admissible wavelets and orthogonal decomposition of L2(IG(2),H)[J]. Front. Math. China, 2007, 2(3): 491-499.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed