|
|
|
Construction of a class of multivariate compactly supported wavelet bases for L2(?d) |
Fengying ZHOU, Yunzhang LI( ) |
| College of Applied Sciences, Beijing University of Technology, Beijing 100124, China |
|
|
|
|
Abstract In this paper, for a given d×d expansive matrix M with |det M| = 2, we investigate the compactly supported M-wavelets for L2(?d). Starting with a pair of compactly supported refinable functions ? and ? ? satisfying a mild condition, we obtain an explicit construction of a compactly supported wavelet ψ such that {2j/2ψ(Mj·-k):j∈?, k∈?d} forms a Riesz basis for L2(?d). The (anti-)symmetry of such ψ is studied, and some examples are also provided.
|
| Keywords
Riesz basis
wavelet
refinable function
|
|
Corresponding Author(s):
LI Yunzhang,Email:yzlee@bjut.edu.cn
|
|
Issue Date: 01 February 2012
|
|
| 1 |
de Boor C, DeVore R A, Ron A. On the construction of multivariate (pre)wavelets. Constr Approx , 1993, 9(2-3): 123-166 doi: 10.1007/BF01198001
|
| 2 |
Bownik M. Intersection of dilates of shift-invariant spaces. Proc Amer Math Soc , 2009, 137(2): 563-572 doi: 10.1090/S0002-9939-08-09682-2
|
| 3 |
Chui C K. An Introduction to Wavelets. Boston: Academic Press, 1992
|
| 4 |
Chui C K, Wang J Z. A general framework of compactly supported splines and wavelets. J Approx Theory , 1992, 71(3): 263-304 doi: 10.1016/0021-9045(92)90120-D
|
| 5 |
Chui C K, Wang J Z. On compactly supported spline wavelets and a duality principle. Trans Amer Math Soc , 1992, 330(2): 903-915 doi: 10.2307/2153941
|
| 6 |
Cohen A, Daubechies I. A stability criterion for biorthogonal wavelet bases and their related subband coding scheme. Duke Math J , 1992, 68(2): 313-335 doi: 10.1215/S0012-7094-92-06814-1
|
| 7 |
Cohen A, Daubechies I, Feauveau J C. Biorthogonal bases of compactly supported wavelets. Comm Pure Appl Math , 1992, 45(5): 485-560 doi: 10.1002/cpa.3160450502
|
| 8 |
Eugenio H, Weiss G. A First Course on Wavelets. Boca Raton: CRC Press, 1996
|
| 9 |
Huang Y D, Yang S Z, Cheng Z X. The construction of a class of trivariate nonseparable compactly supported wavelets. Int J Wavelets Multiresolut Inf Process , 2009, 7(3): 255-267 doi: 10.1142/S0219691309002908
|
| 10 |
Jia R Q. Approximation properties of multivariate wavelets. Math Comp , 1998, 67(222): 647-665 doi: 10.1090/S0025-5718-98-00925-9
|
| 11 |
Jia R Q. Bessel sequences in Sobolev spaces. Appl Comput Harmon Anal , 2006, 20(2): 298-311 doi: 10.1016/j.acha.2005.11.001
|
| 12 |
Jia R Q, Lau K S, Zhou D X. Lp solutions of refinement equations. J Fourier Anal Appl , 2001, 7(2): 143-167 doi: 10.1007/BF02510421
|
| 13 |
Jia R Q, Micchelli C A. Using the refinement equations for the construction of pre-wavelets, II Powers of two. In: Curves and Surfaces . Boston: Academic Press, 1991, 209-246
|
| 14 |
Jia R Q, Wang J Z, Zhou D X. Compactly supported wavelet bases for Sobolev spaces. Appl Comput Harmon Anal , 2003, 15(3): 224-241 doi: 10.1016/j.acha.2003.08.003
|
| 15 |
Li Y Z. On the construction of a class of bidimensional nonseparable compactly supported wavelets. Proc Amer Math Soc , 2005, 133(12): 3505-3513 doi: 10.1090/S0002-9939-05-07911-6
|
| 16 |
Long R L, High Dimensional Wavelet Analysis. Beijing: World Book Publishing Corporation, 1995 (in Chinese)
|
| 17 |
Micchelli C A. Using the refinement equation for the construction of pre-wavelets. Numer Algorithms , 1991, 1(1): 75-116 doi: 10.1007/BF02145583
|
| 18 |
Rudin W. Functional Analysis. New York: McGraw-Hill, Inc, 1991
|
| 19 |
Schoenberg I J. Cardinal Spline Interpolation. Philadelphia: SIAM, 1973 doi: 10.1137/1.9781611970555
|
| 20 |
Villemoes L F. Sobolev regularity of wavelets and stability of iterated filter banks. In: Progress in Wavelet Analysis and Applications . Gif-sur-Yvette: Fronti`eres, 1993, 243-251
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|