Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2012, Vol. 7 Issue (1) : 1-18    https://doi.org/10.1007/s11464-011-0162-5
RESEARCH ARTICLE
Augmentation quotients for complex representation rings of dihedral groups
Shan CHANG1(), Hong CHEN2, Guoping TANG3
1. School of Mathematics, Hefei University of Technology, Hefei 230026, China; 2. School of Mathematical Sciences, Soochow University, Suzhou 215006, China; 3. School of Mathematical Sciences, Graduate University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(197 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Denote by Dm the dihedral group of order 2m. Let ?(Dm) be its complex representation ring, and let Δ(Dm) be its augmentation ideal. In this paper, we determine the isomorphism class of the n-th augmentation quotient Δn(Dm)/Δn+1(Dm) for each positive integer n.

Keywords dihedral group      representation      augmentation quotient     
Corresponding Author(s): CHANG Shan,Email:sc@ustc.edu   
Issue Date: 01 February 2012
 Cite this article:   
Shan CHANG,Hong CHEN,Guoping TANG. Augmentation quotients for complex representation rings of dihedral groups[J]. Front Math Chin, 2012, 7(1): 1-18.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-011-0162-5
https://academic.hep.com.cn/fmc/EN/Y2012/V7/I1/1
1 Bachman F, Grunenfelder L. The periodicity in the graded ring associated with an integral group ring. J Pure Appl Algebra , 1974, 5: 253-264
doi: 10.1016/0022-4049(74)90036-X
2 Curtis C W, Reiner I. Representation Theory of Finite Groups and Associative Algebras. Providence: AMS Chelsea Publishing, 2006
3 Chang Shan, Tang Guoping. A basis for augmentation quotients of finite abelian groups. J Algebra , 2011, 327: 466-488
doi: 10.1016/j.jalgebra.2010.08.020
4 Karpilovsky G. Commutative Group Algebras. Monographs and Textbooks in Pure and Applied Mathematics , Vol 78. New York: Marcel Dekker, 1983
5 Magurn B A. An Algebraic Introduction to K-Theory . Cambridge: Cambridge University Press, 2002
6 Serre J -P. Linear Representations of Finite Groups. Graduate Texts in Mathematics , Vol 42. New York: Springer-Verlag, 1977
[1] Lifang WANG, Ke WU, Jie YANG, Zifeng YANG. Representation of elliptic Ding-Iohara algebra[J]. Front. Math. China, 2020, 15(1): 155-166.
[2] Jiashun HU, Xiang MA, Chunxiong ZHENG. Global geometrical optics method for vector-valued Schrödinger problems[J]. Front. Math. China, 2018, 13(3): 579-606.
[3] Lei LIU. Lagrangian Grassmann manifold Λ(2)[J]. Front. Math. China, 2018, 13(2): 341-365.
[4] Jin CHENG. Generalized B(m, n), C(n),D(m, n)-graded Lie superalgebras arising from fermionic-bosonic representations[J]. Front. Math. China, 2016, 11(6): 1451-1470.
[5] Haiyan ZHU. Constructing cotorsion pairs over generalized path algebras[J]. Front. Math. China, 2016, 11(4): 1079-1096.
[6] Claus Michael RINGEL. Representation theory of Dynkin quivers. Three contributions[J]. Front. Math. China, 2016, 11(4): 765-814.
[7] Jiangrong CHEN,Zhonghua ZHAO. A fundamental representation of quantum generalized Kac-Moody algebras with one imaginary simple root[J]. Front. Math. China, 2015, 10(5): 1041-1056.
[8] Ruipu BAI,Ying LI. Extensions of n-Hom Lie algebras[J]. Front. Math. China, 2015, 10(3): 511-522.
[9] Liangchen LI,Xiangwen LI. Nowhere-zero 3-flows in Cayley graphs on generalized dihedral group and generalized quaternion group[J]. Front. Math. China, 2015, 10(2): 293-302.
[10] Jizhu NAN,Chunyue WANG,Qingcheng ZHANG. Hom-Malcev superalgebras[J]. Front. Math. China, 2014, 9(3): 567-584.
[11] Gabriel NAVARRO. Valued Gabriel quiver of a wedge product and semiprime coalgebras[J]. Front Math Chin, 2013, 8(5): 1157-1183.
[12] Mingjing ZHANG. Theta-lifting and geometric quantization for GL(n, ?)[J]. Front Math Chin, 2012, 7(4): 785-793.
[13] Sitao LING, Tongsong JIANG. New method for general Kennaugh’s pseudoeigenvalue equation in radar polarimetry[J]. Front Math Chin, 2012, 7(1): 85-95.
[14] Li WANG. Erd?s-Ko-Rado theorem for irreducible imprimitive reflection groups[J]. Front Math Chin, 2012, 7(1): 125-144.
[15] Fulin CHEN, Shaobin TAN. Twisted fermionic and bosonic representations for a class of BC-graded Lie algebras[J]. Front Math Chin, 2011, 6(4): 607-628.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed