?)" /> ?)" /> ?)" />
Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2012, Vol. 7 Issue (4) : 785-793    https://doi.org/10.1007/s11464-012-0177-6
RESEARCH ARTICLE
Theta-lifting and geometric quantization for GL(n, ?)
Mingjing ZHANG()
School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China
 Download: PDF(152 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we verify Vogan’s conjecture on quantization in the representation theory for G = GL(n, ?). Also we get some relationship between the induction of orbits and Howe’s θ-lifting of unitary representations.

Keywords Vogan’s conjecture on quantization      induced orbits      unitary representations      theta-lifting     
Corresponding Author(s): ZHANG Mingjing,Email:0310030@mail.nankai.edu.cn   
Issue Date: 01 August 2012
 Cite this article:   
Mingjing ZHANG. Theta-lifting and geometric quantization for GL(n, ?)[J]. Front Math Chin, 2012, 7(4): 785-793.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-012-0177-6
https://academic.hep.com.cn/fmc/EN/Y2012/V7/I4/785
1 Adams J, Barbasch D. Reductive dual pair correspondence for complex groups. J Funct Anal , 1995, 132: 1-42
doi: 10.1006/jfan.1995.1099
2 Adams J, Huang J S, Vogan D. Functions on the model orbits in E8. Represent Theory , 1998, 2: 224-263
doi: 10.1090/S1088-4165-98-00048-X
3 Collingwood D, McGovern W. Nilpotent Orbits in Semisimple Lie Algebras. New York: Chapman and Hall, 1993
4 Howe R. θ-series and invariant theory. Proc Sympos Pure Math , 1979, 33(1): 275-285
5 Howe R. Transcending classical invariant theory. J Amer Math Soc , 1989, 2: 535-552
doi: 10.1090/S0894-0347-1989-0985172-6
6 Kostant B. Quantization and unitary representations. In: Taam C, ed. Lectures in Modern Analysis and Applications. Lecture Notes in Mathematics, Vol 170 . Berlin-Heidelberg-New York: Springer-Verlag, 1970, 87-207
7 Lusztig G, Spaltenstein N. Induced unipotent classes. J Lond Math Soc , 1979, 19: 41-52
doi: 10.1112/jlms/s2-19.1.41
8 Namikawa Y. Induced nilpotent orbits and birational geometry. Adv Math , 2009, 222: 547-564
doi: 10.1016/j.aim.2009.05.001
9 Torasso P. Quantification géométrique, opérateurs d’entrelacement et représentations unitarires de SL~3(?). Acta Math , 1983, 150: 153-242
doi: 10.1007/BF02392971
10 Vogan D. Unitary Representations of Reductive Lie Groups. Annals of Mathematics Studies . Princeton: Princeton University Press, 1987
11 Vogan D. Associated varieties and unipotent representations. In: Barker W, Sally P, eds. Harmonic Analysis on Reductive Groups . Boston-Basel-Berlin: Birkh?user, 1991, 315-388
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed