Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    0, Vol. Issue () : 459-485    https://doi.org/10.1007/s11464-012-0206-5
RESEARCH ARTICLE
Fluid approximation for generalized Jackson network with vacations
Yongjiang GUO()
School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
 Download: PDF(263 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Using a bounding technique, we prove that the fluid model of generalized Jackson network (GJN) with vacations is the same as a GJN without vacations, which means that vacation mechanism does not affect the dynamic performance of GJN under fluid approximation. Furthermore, in order to present the impact of vacation on the performance of GJN, we show that exponential rate of convergence for fluid approximation only holds for large N, which is different from a GJN without vacations. The results on fluid approximation and convergence rate are embodied by the queue length, workload, and busy time processes.

Keywords Generalized Jackson network (GJN) with vacations      fluid approximation      exponential convergence rate     
Corresponding Author(s): GUO Yongjiang,Email:yongjiangguo@163.com   
Issue Date: 01 June 2012
 Cite this article:   
Yongjiang GUO. Fluid approximation for generalized Jackson network with vacations[J]. Front Math Chin, 0, (): 459-485.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-012-0206-5
https://academic.hep.com.cn/fmc/EN/Y0/V/I/459
1 Chen H. Fluid approximations and stability of multiclass queueing networks I: Workconserving disciplines. Ann Appl Probab , 1995, 5: 637-665
doi: 10.1214/aoap/1177004699
2 Chen H. Rate of convergence of fluid approximation for generalized Jackson network. J Appl Probab , 1996, 33: 804-814
doi: 10.2307/3215360
3 Chen H, Mandelbaum A. Leontief systems, RBV’s and RBM’s. In: Davis M H A, Elliotte R J, eds. Applied Stochastic Processes. New York: Gordon and Breach Science Publisher, 1991, 1-43
4 Chen H, Mandelbaum A. Discrete flow networks: Bottlenecks analysis and fluid approximations. Math Oper Res , 1991, 16: 408-446
doi: 10.1287/moor.16.2.408
5 Chen H, Shanthikumar J G. Fluid limits and diffusion approximations for networks of multi-server queues in heavy traffic. Discrete Event Dyn Syst , 1994, 4: 269-291
doi: 10.1007/BF01438710
6 Chen H, Yao D D. Fundamentals of Queueing Networks. New York: Springer-Verlag, 2001
7 Dai J G. On the positive Harris recurrence for multiclass queueing networks. Ann Appl Probab , 1995, 5: 49-77
doi: 10.1214/aoap/1177004828
8 Dai J G. Stability of Fluid and Stochastic Processing Networks. Miscellanea Publication, No 9. Centre for Mathematical Physics and Stochastic, Denmark (http://www.maphysto.dk/). January, 1999
9 Doshi B. Queueing systems with vacations—a survey. Queueing Syst , 1986, 1: 29-66
doi: 10.1007/BF01149327
10 Gamarnik D, Zeevi A. Validity of heavy traffic steady-state approximations in open queueing networks. Ann Appl Probab , 2006, 16: 56-90
doi: 10.1214/105051605000000638
11 Guo Y J, Yang Y, Yu J. Rate of convergence of fluid approximation for a multi-class single-server queue. Acta Math Appl Sin , 2006, 29(6): 1125-1138 (in Chinese)
12 Guo Y J. Fluid approximation and its convergence rate for GI/G/1 queue with vacations. Acta Math Appl Sin , 2011, 27(1): 43-58
doi: 10.1007/s10255-011-0038-1
13 Guo Y J. On the fluid approximation for a multiclass queue under non-preemptive SBP service discipline. Acta Math Sin , 2012, 28(2): 379-404
doi: 10.1007/s10114-012-9643-z
14 Harrison J M. Brownian models of queueing networks with heterogeneous customer populations. In: Fleming W, Lions P L, eds. Stochastic Differential Systems, Stochastic Control Theory and Applications, Vol. 10 of Proceedings of the IMA . New York: Springer-Verlag, 1988, 147-186
15 Harrison J M, Reiman M I. Reflected Brownian motion in an orthant. Ann Probab , 1981, 9: 302-308
doi: 10.1214/aop/1176994471
16 Jackson J R. Networks of waiting lines. Operations Research , 1957, 5: 518-521
doi: 10.1287/opre.5.4.518
17 Jackson J R. Jobshop-like queueing systems. Management Sci , 1963, 10: 131-142
doi: 10.1287/mnsc.10.1.131
18 Johnson D P. Diffusion Approximation for Optimal Filtering of Jump Processes and for Queueing Networks. . University of Wisconsin, 1983
19 Kella O, Whitt W. Diffusion approximations for queue with server vacations. Adv Appl Probab , 1990, 22: 706-729
doi: 10.2307/1427465
20 Kelly F P. Reversibility and Stochastic Networks. New York: Wiley, 1979
21 Meyn S P, Down D. Stability of generalized Jackson networks. Ann Appl Probab , 1994,4: 124-148
doi: 10.1214/aoap/1177005203
22 Netus M F. Matrix-Geometric Solutions in Stochastic Models. Baltimore and London: Johns Hopkins University Press, 1981
23 Newell G F. Applications of Queueing Theory. London: Chapman and Hall, 1982
24 Reiman M I. Open queueing networks in heavy traffic. Math Oper Res , 1984, 9: 441-458
doi: 10.1287/moor.9.3.441
25 Ross S M. Stochastic Processes. 2nd ed. New York: Wiley, 1996
26 Royden H L. Real Analysis. New York: MacMillan, 1988
27 Sigman K. The stability of open queueing networks. Stochastic Process Appl , 1990, 35: 11-25
doi: 10.1016/0304-4149(90)90119-D
28 Skorohod A V. Stochastic differential equations for a bounded region. Theory Probab Appl , 1961, 6: 261-274
29 Takagi H. Queueing Analysis, Vol 1. Amsterdam: Elsevier Science Publishers, 1991
30 Tian N, Zhang Z G. Vacation Queueing Models—Theory and Applications. New York: Springer-Verlag, 2006
31 Whitt W. Preservation of rates of convergence under mappings. Zeitschrift Wahrescheinlichkeitstheorie , 1974, 29: 39-44
doi: 10.1007/BF00533185
32 Zhang Z G, Tian N. On the three threshold policy in the multi-server queueing system with vacations. Queueing Syst , 2005, 51: 173-186
doi: 10.1007/s11134-005-3752-7
[1] Mu-Fa Chen. Exponential convergence rate in entropy[J]. Front. Math. China, 2007, 2(3): 329-358.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed