Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2012, Vol. 7 Issue (3) : 587-595    https://doi.org/10.1007/s11464-012-0211-8
RESEARCH ARTICLE
Existence of solutions for elliptic equations without superquadraticity condition
Yimin ZHANG1(), Yaotian SHEN2
1. Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; 2. Department of Mathematics, South China University of Technology, Guangzhou 510641, China
 Download: PDF(132 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

By weakening or dropping the superquadraticity condition (SQC), the existence of positive solutions for a class of elliptic equations is established. In particular, we deal with the asymptotical linearities as well as the superlinear nonlinearities.

Keywords Mountain pass      superquadraticity condition (SQC)      Palais-Smale type condition      weakly superquadraticity condition (WSQC)     
Corresponding Author(s): ZHANG Yimin,Email:ymin.zhang@mail.scut.edu.cn   
Issue Date: 01 June 2012
 Cite this article:   
Yimin ZHANG,Yaotian SHEN. Existence of solutions for elliptic equations without superquadraticity condition[J]. Front Math Chin, 2012, 7(3): 587-595.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-012-0211-8
https://academic.hep.com.cn/fmc/EN/Y2012/V7/I3/587
1 Ambrosetti A, Rabinewitz P H. Dual variational method in critical point theory and applications. J Funct Anal , 1973, 14: 349-381
doi: 10.1016/0022-1236(73)90051-7
2 Cerami G. Un criterio de esistenza per i punti critici su varietà illimitate. Rc Ist Lomb Sci Lett , 1978, 112: 332-336
3 Chen Z H, Shen Y T, Yao Y X. Some existence results of solutions for p-Laplacian. Acta Math Sci , 2003, 23B: 487-496
4 Costa D G, Magalh?es C A. Variational elliptic problems which are nonquadratic at infinity. Nonlinear Anal , 1994, 23: 1401-1412
doi: 10.1016/0362-546X(94)90135-X
5 Huang Y S, Zhou H S. Positive solution for -Δpu=f(x,u) with f(x,u) growing as up-1 at infinity. Appl Math Lett , 2004, 17: 881-887
doi: 10.1016/j.aml.2004.02.001
6 Jeanjean L. On the existence of bounded Palais-Smale sequences and applications to a Landesman-Lazer-type problem set on ?N. Proc Roy Soc Edinburgh , 1999, 129A: 787-809
doi: 10.1017/S0308210500013147
7 Li G B, Zhou H S. Asymptotically “linear” Dirichlet problem for the p-Laplacian. Nonlinear Anal , 2001, 43: 1043-1055
doi: 10.1016/S0362-546X(99)00243-6
8 Liu S B, Li S J. Infinitely many solutions for a superlinear elliptic equation. Acta Math Sinica , 2003, 46(4): 625-630
9 Schechter M, Zou W M. Superlinear problems. Pacific J Math , 2004, 214: 145-160
doi: 10.2140/pjm.2004.214.145
10 Shen Y T, Guo X K. Discussion of nontrivial critical points of the functional ΩF(x,u,Du)dx. Acta Math Sci , 1987, 10: 249-258
11 Wang Z P, Zhou H S. Positive solutions for a nonhomogeneous elliptic equation on ?N without (AR) condition. J Math Anal Appl , 2009, 353: 470-479
doi: 10.1016/j.jmaa.2008.11.080
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed