Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2012, Vol. 7 Issue (4) : 717-723    https://doi.org/10.1007/s11464-012-0218-1
RESEARCH ARTICLE
Evolution of hypersurfaces by powers of mean curvature minus an external force field
Yannan LIU()
Department of Mathematics, Beijing Technology and Business University, Beijing 100048, China
 Download: PDF(110 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we study the evolution of hypersurfaces by powers of mean curvature minus an external force field. We prove that when the power is 2, the flow has a long-time smooth solution for all time under some conditions. Those conditions are that the second fundamental form on the initial submanifolds is not too large, the external force field, with its any order derivatives, is bounded, and the field is convex with its eigenvalues satisfying a pinch inequality.

Keywords Parabolic equation      mean curvature flow      maximum principle (for tensor)     
Corresponding Author(s): LIU Yannan,Email:liuyn@th.btbu.edu.cn   
Issue Date: 01 August 2012
 Cite this article:   
Yannan LIU. Evolution of hypersurfaces by powers of mean curvature minus an external force field[J]. Front Math Chin, 2012, 7(4): 717-723.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-012-0218-1
https://academic.hep.com.cn/fmc/EN/Y2012/V7/I4/717
1 De Turk D. Deforcing metrics in direction of their Ricci tensors. J Differential Geom , 1983, 18: 157-162
2 Hamilton R S. Three-manifolds with positive Ricci curvature. J Differential Geom , 1982, 17: 255-306
3 Jian H Y, Liu Y N. Ginzburg-Landau vortex and mean curvature flow with external force field. Acta Math Sin (Engl Ser) , 2006, 22(6): 1831-1842
doi: 10.1007/s10114-005-0698-y
4 Jian H Y, Liu Y N. Long-time existence of mean curvature flow with external force fields. Pacific J Math , 2008, 234(2): 311-324
doi: 10.2140/pjm.2008.234.311
5 Jian H Y, Xu X W. The vortex dynamics of a Ginzburg-Landau system under pinning effect. Sci China Ser A , 2003, 46: 488-498
6 Liu Y N. Evolution of noncompact hypersurfaces by mean curvature minus a kind of external force field. Front Math China , 2010, 5(2): 311-317
doi: 10.1007/s11464-010-0004-x
7 Liu Y N, Jian H Y. Evolution of hypersurfaces by mean curvature minus external force field. Sci China Ser A , 2007, 50(2): 231-239
doi: 10.1007/s11425-007-2077-x
8 Liu Y N, Jian H Y. Evolution of hypersurfaces by mean curvature minus external force field in Minkowski space. Adv Nonlinear Stud , 2009, 9: 513-522
9 Schulze F. Evolution of convex hypersurfaces by powers of the mean curvature. Math Z , 2005, 251: 721-733
doi: 10.1007/s00209-004-0721-5
[1] Jing AN,Zhendong LUO,Hong LI,Ping SUN. Reduced-order extrapolation spectral-finite difference scheme based on POD method and error estimation for three-dimensional parabolic equation[J]. Front. Math. China, 2015, 10(5): 1025-1040.
[2] Jian LU. Anisotropic inverse harmonic mean curvature flow[J]. Front. Math. China, 2014, 9(3): 509-521.
[3] Yuelong TANG, Yanping CHEN. Superconvergence analysis of fully discrete finite element methods for semilinear parabolic optimal control problems[J]. Front Math Chin, 2013, 8(2): 443-464.
[4] Yannan LIU, . Evolution of noncompact hypersurfaces by mean curvature minus a kind of external force field[J]. Front. Math. China, 2010, 5(2): 311-317.
[5] QIAO Lan, ZHENG Sining. Asymptotic analysis of a coupled nonlinear parabolic system[J]. Front. Math. China, 2008, 3(1): 87-99.
[6] HAN Xiaoli, HAN Xiaoli, LI Jiayu, LI Jiayu. On symplectic mean curvature flows[J]. Front. Math. China, 2007, 2(1): 47-60.
[7] XIN Yuanlong. Rigidity and mean curvature flow via harmonic Gauss maps[J]. Front. Math. China, 2006, 1(3): 325-338.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed