Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2012, Vol. 7 Issue (4) : 765-783    https://doi.org/10.1007/s11464-012-0222-5
RESEARCH ARTICLE
Estimate for exponential sums and its applications
Weili YAO1,2()
1. Department of Mathematics, College of Sciences, Shanghai University, Shanghai 200444, China; 2. School of Mathematics, Shandong University, Jinan 250100, China
 Download: PDF(201 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we establish a new estimate on exponential sums by using the Bombieri-type theorem and the modified Huxley-Hooley contour. We also generalize the famous Goldbach-Vinogradov theorem, via different argument from that of Vinogradov. In particular, our major arcs are quite large and these enlarged major arcs are treated by the estimate we have established.

Keywords Exponential sum      zero-density estimate      circle method     
Corresponding Author(s): YAO Weili,Email:yaoweili@shu.edu.cn   
Issue Date: 01 August 2012
 Cite this article:   
Weili YAO. Estimate for exponential sums and its applications[J]. Front Math Chin, 2012, 7(4): 765-783.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-012-0222-5
https://academic.hep.com.cn/fmc/EN/Y2012/V7/I4/765
1 Davenport H. Analytic Methods for Diophantine Equations and Diophantine Inequalities. Cambridge: Cambridge University Press, 2005
2 Karatsuba A A. Basic Analytic Number Theory. Berlin: Springer-Verlag, 1993
3 Liu Jianya. A large sieve estimate for Dirichlet polynomials and its applications. Ann Univ Sci Budapest Sect Comput , 2007, 27: 91-110
4 Liu Jianya, Zhan Tao. The ternary Goldbach problem in arithmetic progressions. Acta Arith , 1997, 82: 197-227
5 Meng Xianmeng. On sums of three integers with a fixed number of prime factors. J Number Theory , 2005, 114: 37-65
doi: 10.1016/j.jnt.2005.04.013
6 Pan Chengdong, Pan Chengbiao. Goldbach Conjecture. Beijing: Science Press, 1984 (in Chinese)
7 Ramachandra R. Some problems of analytic number theory. Acta Arith , 1976, 31: 313-324
8 Titchmarsh E C. The Theory of the Riemann Zeta-function. Oxford: Oxford University Press, 1986
9 Vinogradov I M. Representation of an odd numbers as the sum of three primes. Dokl Akad Nauk SSSR , 1937, 16: 139-142
10 Wolke D, Zhan Tao. On the distribution of integers with a fixed number of prime factors. Math Z , 1993, 213: 133-147
doi: 10.1007/BF03025713
11 Yao Weili. A Bombieri-type theorem for exponential sums. Acta Math Sin (Engl Ser) (to appear)
[1] Wenjia ZHAO. Hua’s theorem on five squares of primes[J]. Front. Math. China, 2020, 15(4): 835-850.
[2] Rui ZHANG. Slim exceptional set for sums of two squares, two cubes, and two biquadrates of primes[J]. Front. Math. China, 2019, 14(5): 1017-1035.
[3] Xiaoguang HE. Exponential sums involving automorphic forms for GL(3) over arithmetic progressions[J]. Front. Math. China, 2018, 13(6): 1355-1368.
[4] Min ZHANG, Jinjiang LI. Distribution of cube-free numbers with form [nc][J]. Front. Math. China, 2017, 12(6): 1515-1525.
[5] Huan LIU. Sums of Fourier coefficients of cusp forms of level D twisted by exponential functions[J]. Front. Math. China, 2017, 12(3): 655-673.
[6] Claus BAUER. Large sieve inequality with sparse sets of moduli applied to Goldbach conjecture[J]. Front. Math. China, 2017, 12(2): 261-280.
[7] Meng ZHANG. Waring-Goldbach problems for unlike powers with almost equal variables[J]. Front. Math. China, 2016, 11(2): 449-460.
[8] Yuchao WANG. Values of binary linear forms at prime arguments[J]. Front. Math. China, 2015, 10(6): 1449-1459.
[9] Liqun HU. Quadratic forms connected with Fourier coefficients of Maass cusp forms[J]. Front. Math. China, 2015, 10(5): 1101-1112.
[10] Qingfeng SUN,Yuanying WU. Exponential sums involving Maass forms[J]. Front. Math. China, 2014, 9(6): 1349-1366.
[11] Yanjun YAO. Sums of nine almost equal prime cubes[J]. Front. Math. China, 2014, 9(5): 1131-1140.
[12] Hengcai TANG, Feng ZHAO. Waring-Goldbach problem for fourth powers in short intervals[J]. Front Math Chin, 2013, 8(6): 1407-1423.
[13] Tingting WANG, Wenpeng ZHANG. On hybrid mean value of Dedekind sums and two-term exponential sums[J]. Front Math Chin, 2011, 6(3): 557-563.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed