Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2013, Vol. 8 Issue (5) : 1197-1226    https://doi.org/10.1007/s11464-012-0230-5
RESEARCH ARTICLE
Numerical algorithms for Panjer recursion by applying Bernstein approximation
Siyuan XIE1, Jingping YANG2(), Shulin ZHOU3
1. Department of Financial Mathematics, School of Mathematical Sciences, Peking University, Beijing 100871, China; 2. LMEQF, Department of Financial Mathematics, School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing 100871, China; 3. LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China
 Download: PDF(240 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In actuarial science, Panjer recursion (1981) is used in insurance to compute the loss distribution of the compound risk models. When the severity distribution is continuous with density function, numerical calculation for the compound distribution by applying Panjer recursion will involve an approxi- mation of the integration. In order to simplify the numerical algorithms, we apply Bernstein approximation for the continuous severity distribution function and obtain approximated recursive equations, which are used for computing the approximated values of the compound distribution. The theoretical error bound for the approximation is also obtained. Numerical results show that our algorithm provides reliable results.

Keywords Compound risk model      Panjer recursion      Bernstein approximation      excess-of-loss reinsurance     
Corresponding Author(s): YANG Jingping,Email:yangjp@math.pku.edu.cn   
Issue Date: 01 October 2013
 Cite this article:   
Siyuan XIE,Jingping YANG,Shulin ZHOU. Numerical algorithms for Panjer recursion by applying Bernstein approximation[J]. Front Math Chin, 2013, 8(5): 1197-1226.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-012-0230-5
https://academic.hep.com.cn/fmc/EN/Y2013/V8/I5/1197
1 Atkinson K. Elementary Numerical Analysis . New York: Wiley, 2003
2 Bernstein S N. Démonstration du théorème de weierstrass, fondeé sur le calcul des probabilités. Commun Soc Math Kharkow , 1912, 13: 1-2
3 Brunner H, Houwen P J van der. The Numerical Solution of Volterra Equations. Amsterdam and New York: North-Holland, 1986
4 Bühlmann H.Numerical evaluation of the compound Poisson distribution: recursion or Fast Fourier Transform? Scand Actuarial J , 1984, (2): 116-126
5 Dickson D C M. A review of Panjers recursion formula and its applications. British Actuarial J, 1995 , 1(1): 107-124
doi: 10.1017/S1357321700000969
6 Frachot A, Georges P, T. Roncalli T. Loss distribution approach for operational risk. Working Paper, Groupe de Recherche Operationelle, France , 2001
7 Gerhold S, Warnung R. Finding efficient recursions for risk aggregation by computer algebra. J Comput Appl Math , 2009, 223(1): 499-507
doi: 10.1016/j.cam.2008.01.025
8 Grubel R, Hermesmeier R. Computation of compound distributions I: Aliasing errors and exponential tilting. ASTIN Bulletin , 1999, 29(2): 197-214
doi: 10.2143/AST.29.2.504611
9 Grubel R, Hermesmeier R. Computation of compound distributions II: Discretization errors and Richardson extrapolation. ASTIN Bulletin , 2000, 30(2): 309-331
doi: 10.2143/AST.30.2.504638
10 Hairer E, N?rsett S P, Wanner G. Solving Ordinary Differential Equations II. Berlin: Springer, 1993
11 Hipp C. Speedy convolution algorithms and Panjer recursions for phase-type distributions. Insurance: Mathematics and Economics , 2006, 38(1): 176-188
doi: 10.1016/j.insmatheco.2005.08.009
12 den Iseger P W, Smith M A J, Dekker R. Computing compound distributions faster! Insurance: Math Econom , 1996, 20(1): 23-34
doi: 10.1016/S0167-6687(97)00002-4
13 Lorentz G G. Bernstein Approximation . Toronto: University of Toronto Press, 1953
14 Moscadelli M.The modelling of operational risk: experience with the analysis of the data collected by the Basel Committee. Temi di discussione del Servizio Studi, 517.2004
15 Panjer H. Recursive evaluation of a family of compound distributions. ASTIN Bulletin , 1981, 12(1): 22-26
16 Panjer H, Wang S. On the stability of recursive formulas. ASTIN Bulletin , 1993, 23(2): 227-258
doi: 10.2143/AST.23.2.2005093
17 Panjer H, Willmot G E. Insurance Loss Models . Schaumburg: Society of Actuaries, 1993
18 Peano G. Démonstration de l’intégrabilité des équations différentielles ordinaires. Math Ann , 1890, 37(2): 182-228
doi: 10.1007/BF01200235
19 Rajagpoal L, Roy S D. Design of maximally-flat FIR filters using the Bernstein polynomial. Circuits and Systems, IEEE , 1987, 34(12): 1587-1590
doi: 10.1109/TCS.1987.1086077
20 Sancetta A, Satchell S E. The Bernstein copula and its applications to modelling and approximations of multivariate distributions. Econometric Theory , 2004, 20(3): 535-562
doi: 10.1017/S026646660420305X
21 Sundt B, Jewell W S. Further results on recursive evaluation of compound distributions. ASTIN Bulletin , 1981, 12(1): 27-29
22 Yang J P, Cheng S H, Wang X Q. Bivariate recursive equation on excess-of-loss reinsurance. Acta Math Sin (Engl Ser) , 2007, 23(3): 467-478
doi: 10.1007/s10114-005-0722-2
23 Yang J P, Cheng S H, Wu Q. Recursive equations for the compound distributions with severity distributions of the mixed type. Sci China, Ser A: Math , 2005, 48(5): 594-609
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed