Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2012, Vol. 7 Issue (5) : 883-894    https://doi.org/10.1007/s11464-012-0238-x
RESEARCH ARTICLE
Estimates of generalized Chebyshev function on GLm
Yan QU1, Shuai ZHAI2()
1. Institute of Mathematics, Chinese Academy of Sciences, Beijing 100190, China; 2. School of Mathematics, Shandong University, Jinan 250100, China
 Download: PDF(161 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we study the generalized Chebyshev function related to automorphic L-functions of GLm(??), and estimate its asymptotic behavior with respect to the parameters of the original automorphic objects.

Keywords Automorphic L-function      Chebyshev function      explicit formula      conductor     
Corresponding Author(s): ZHAI Shuai,Email:zhaishuai@mail.sdu.edu.cn   
Issue Date: 01 October 2012
 Cite this article:   
Yan QU,Shuai ZHAI. Estimates of generalized Chebyshev function on GLm[J]. Front Math Chin, 2012, 7(5): 883-894.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-012-0238-x
https://academic.hep.com.cn/fmc/EN/Y2012/V7/I5/883
1 1. Gallagher P X. A large sieve density estimate near σ= 1. Invent Math , 1970, 11: 329-339
doi: 10.1007/BF01403187
2 2. Gallagher P X. Some consequences of the Riemann hypothesis. Acta Arith , 1980, 37: 339-343
3 3. Ingham A E. The Distribution of Prime Numbers. Cambridge: Cambridge University Press, 1932
4 4. Iwaniec H, Kowalski E. Analytic Number Theory. Providence: Amer Math Soc, 2004
5 5. Liu J, Ye Y. Superpositions of distinct L-functions. Forum Math , 2002, 14: 419-455
doi: 10.1515/form.2002.020
6 6. Liu J, Ye Y. Perron’s formula and the prime number theorem for automorphic L-functions. Pure Appl Math Q , 2007, 3: 481-497
7 7. Luo W, Rudnick Z, Sarnak P. On Selberg’s eigenvalue conjecture. Geom Funct Anal , 1995, 5: 387-401
doi: 10.1007/BF01895672
8 8. Qu Y. The prime number theorem for automorphic L-functions for GLm. J Number Theory , 2007, 122: 84-99
doi: 10.1016/j.jnt.2006.03.007
9 9. Tenenbaum G. Introduction to Analytic and Probabilistic Number Theory. Cambridge: Cambridge University Press, 1995
10 10. Wu J, Ye Y. Hypothesis H and the prime number theorem for automorphic representations. Funct Approx Comment Math , 2007, 37(2): 461-471
doi: 10.7169/facm/1229619665
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed