Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2012, Vol. 7 Issue (6) : 1043-1058    https://doi.org/10.1007/s11464-012-0245-y
RESEARCH ARTICLE
A smoothing inexact Newton method for P0 nonlinear complementarity problem
Haitao CHE1,2(), Yiju WANG2, Meixia LI1
1. School of Mathematics and Information Science, Weifang University,Weifang 261061, China; 2. School of Management Science, Qufu Normal University, Rizhao 276800, China
 Download: PDF(146 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We first propose a new class of smoothing functions for the nonlinear complementarity function which contains the well-known Chen-Harker- Kanzow-Smale smoothing function and Huang-Han-Chen smoothing function as special cases, and then present a smoothing inexact Newton algorithm for the P0 nonlinear complementarity problem. The global convergence and local superlinear convergence are established. Preliminary numerical results indicate the feasibility and efficiency of the algorithm.

Keywords Nonlinear complementarity problem (NCP)      inexact Newton methods      P0-function      smoothing function     
Corresponding Author(s): CHE Haitao,Email:haitaoche@163.com   
Issue Date: 01 December 2012
 Cite this article:   
Yiju WANG,Meixia LI,Haitao CHE. A smoothing inexact Newton method for P0 nonlinear complementarity problem[J]. Front Math Chin, 2012, 7(6): 1043-1058.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-012-0245-y
https://academic.hep.com.cn/fmc/EN/Y2012/V7/I6/1043
1 Chen B, Harker P T. A non-interior-point continuation method for linear complementarity problems. SIAM J Matrix Anal Appl , 1993, 14(4): 1168-1190
doi: 10.1137/0614081
2 Chen B, Ma C. A new smoothing Broyden-like method for solving nonlinear complementarity problem with a P0 function. J Global Optim , 2011, 51(3): 473-495
doi: 10.1007/s10898-010-9640-7
3 Chen X, Qi L, Sun D. Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities. Math Comput , 1998, 67(222): 519-540
doi: 10.1090/S0025-5718-98-00932-6
4 Clarke F H. Optimization and Nonsmooth Analysis. New York: Wiley, 1983
5 Ferris M C, Pang J S. Engineering and economic applications of complementarity problems. SIAM Review , 1997, 39(4): 669-713
doi: 10.1137/S0036144595285963
6 Geiger C, Kanzow C. On the resolution of monotone complementarity problems. Comput Optim Appl , 1996, 5: 155-173
doi: 10.1007/BF00249054
7 Harker P T, Pang J S. Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications. Math Program , 1990, 48(2): 161-220
doi: 10.1007/BF01582255
8 Hotta K, Yoshise A. Global convergence of a class of non-interior point algorithms using Chen-Harker-Kanzow-Smale functions for nonlinear complementarity problems. Math Program , 1999, 86: 105-133
doi: 10.1007/s101070050082
9 Huang Z, Han J, Chen Z. Predictor-Corrector Smoothing Newton Method, Based on a New Smoothing Function, for Solving the Nonlinear Complementarity Problem with a P0 Function. J Optim Theory Appl , 2003, 117(1): 39-68
doi: 10.1023/A:1023648305969
10 Kanzow C. Some noninterior continuation methods for linear complementarity problems. SIAM J Matrix Anal Appl , 1996, 17(4): 851-868
doi: 10.1137/S0895479894273134
11 Kanzow C, Kleinmichel H. A new class of semismooth Newton-type methods for nonlinear complementarity problems. Comput Optim Appl , 1998, 11: 227-251
doi: 10.1023/A:1026424918464
12 Luca T D, Facchinei F, Kanzow C. A semismooth equation approach to the solution of nonlinear complementarity problems. Math Program , 1996, 75(3): 407-439
doi: 10.1007/BF02592192
13 Ma C, Chen X. The convergence of a one-step smoothing Newton method for P0-NCP base on a new smoothing NCP-function. J Comput Appl Math , 2008, 216(1): 1-13
doi: 10.1016/j.cam.2007.03.031
14 Mathiesen L. An algorithm based on a sequence of a linear complementarity problems applied to a Walrasian equilibrium model: an example. Math Program , 1987, 37(1): 1-18
doi: 10.1007/BF02591680
15 Mifflin R. Semismooth and semiconvex functions in constrained optimization. SIAM J Control Optim , 1977, 15(6): 957-972
doi: 10.1137/0315061
16 Natasa K, Sanja R. Globally convergent Jacobian smoothing inexact Newton methods for NCP. Comput Optim Appl , 2008, 41(2): 243-261
doi: 10.1007/s10589-007-9104-2
17 Pang J S, Gabriel A. NE/SQP: a robust algorithm for nonlinear complementarity problems. Math Program , 1993, 60: 295-337
doi: 10.1007/BF01580617
18 Qi L. Convergence analysis of some algorithms for solving nonsmooth equations. Math Oper Res , 1993, 18(1): 227-244
doi: 10.1287/moor.18.1.227
19 Qi L, Sun D, Zhou G. A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities. Math Program , 2000, 87(1): 1-35
20 Qi L, Sun J. A nonsmooth version of Newton’s method. Math Programming , 1993, 58(3): 353-367
doi: 10.1007/BF01581275
21 Sun D, Qi L. On NCP functions. Comput Optim Appl , 1999, 13: 201-220
doi: 10.1023/A:1008669226453
22 Xie D, Ni Q. An incomplete Hessian Newton minimization method and its application in a chemical database problem. Comput Optim Appl , 2009, 44(3): 467-485
doi: 10.1007/s10589-008-9164-y
23 Zhang X, Jiang H, Wang Y. A smoothing Newton method for generalized nonlinear complementarity problem over a polyhedral cone. J Comput Appl Math , 2008, 212: 75-85
doi: 10.1016/j.cam.2006.03.042
24 Zhang J, Zhang K. A variant smoothing Newton method for P0-NCP based on a new smoothing function. J Comput Appl Math , 2009, 225(1): 1-8
doi: 10.1016/j.cam.2008.06.012
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed