|
|
|
Nowhere-zero 3-flows in matroid base graph |
Yinghao ZHANG, Guizhen LIU( ) |
| School of Mathematics, Shandong University, Jinan 250100, China |
|
|
|
|
Abstract The base graph of a simple matroid M=(E,?) is the graph G such that V(G)=? and E(G)={BB′:B,B′∈?,|B\B′|=1}, where the same notation is used for the vertices of G and the bases of M. It is proved that the base graph G of connectedsimple matroid M is Z3-connected if |V (G)|≥5. We also proved that if M is not a connected simple matroid, then the base graph G of M does not admit a nowhere-zero 3-flow if and only if |V (G)| = 4. Furthermore, if for every connected component Ei (i≥2) of M, the matroid ase graph Gi of Mi = M|Ei has |V (Gi)|≥5, then G is Z3-connected which also implies that G admits nowhere-zero 3-flow immediately.
|
| Keywords
Matroid
base graph
nowhere-zero 3-flow
Z3-connectivity
|
|
Corresponding Author(s):
LIU Guizhen,Email:gzliu@sdu.edu.cn
|
|
Issue Date: 01 February 2013
|
|
| 1 |
Bondy J A, Murty U S R. Graph Theory with Application. New York: North-Holland, 1976
|
| 2 |
Cummins R L. Hamiltonian circuits in tree graph. IEEE Trans Circuits Syst , 1966, 13: 82-90
|
| 3 |
Fan G, Lai H, Xu R, Zhang C, Zhou C. Nowhere-zero 3-flows in triangularly connected graphs. J Combin Theory Ser B , 2008, 98: 1325-1336 doi: 10.1016/j.jctb.2008.02.008
|
| 4 |
Jaeger F. Flows and generalized coloring theorem in graphs. J Combin Theory Ser B , 1979, 26: 205-216 doi: 10.1016/0095-8956(79)90057-1
|
| 5 |
Jaeger F, Linial N, Payan C, Tarsi M. Group connectivity of graphs—a nonhomogeneous analogue of nowhere-zero flow properties. J Combin Theory Ser B , 1992, 56: 165-182 doi: 10.1016/0095-8956(92)90016-Q
|
| 6 |
Lai H. Group connectivity of 3-edge-connected chordal graphs. Graphs Combin , 2000, 16: 165-176 doi: 10.1007/s003730050014
|
| 7 |
Lai H. Nowhere-zero 3-flows in locally connected graphs. J Graph Theory , 2003, 42: 211-219 doi: 10.1002/jgt.10085
|
| 8 |
Liu G. A lower bound on connectivities of matroid base graphs. Discrete Math , 1988, 64: 55-66 doi: 10.1016/0012-365X(88)90177-X
|
| 9 |
Liu G, Li P. Paths in circuit graphs of matroid. Theoret Comput Sci , 2008, 396: 258-263 doi: 10.1016/j.tcs.2008.01.033
|
| 10 |
Oxley J G. Matroid Theory. New York: Oxford University Press, 1992
|
| 11 |
Potocnik P, Skoviera M, Skrekovski R. Nowhere-zero 3-flows in abelian Cayley graphs. Discrete Math , 2005, 297: 119-127 doi: 10.1016/j.disc.2005.04.013
|
| 12 |
Seymour P D. Nowhere-zero 6-flows. J Combin Theory Ser B , 1981, 30: 82-94 doi: 10.1016/S0095-8956(81)80013-5
|
| 13 |
Shu J, Zhang C. Nowhere-zero 3-flows in products of graphs. J Graph Theory , 2005, 50: 79-89 doi: 10.1002/jgt.20095
|
| 14 |
Tutte W T. A contribution on the theory of chromatic polynomial. Canad J Math , 1954, 6: 80-91 doi: 10.4153/CJM-1954-010-9
|
| 15 |
Tutte W T. On the algebraic theory of graph colorings. J Combin Theory , 1966, 1: 15-50 doi: 10.1016/S0021-9800(66)80004-2
|
| 16 |
Zhang C. Integer Flows and Cycle Covers of Graphs. New York: Marcel Dekker, 1997
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|