Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2013, Vol. 8 Issue (1) : 217-227    https://doi.org/10.1007/s11464-012-0246-x
RESEARCH ARTICLE
Nowhere-zero 3-flows in matroid base graph
Yinghao ZHANG, Guizhen LIU()
School of Mathematics, Shandong University, Jinan 250100, China
 Download: PDF(117 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The base graph of a simple matroid M=(E,?) is the graph G such that V(G)=? and E(G)={BB:B,B?,|B\B|=1}, where the same notation is used for the vertices of G and the bases of M. It is proved that the base graph G of connectedsimple matroid M is Z3-connected if |V (G)|≥5. We also proved that if M is not a connected simple matroid, then the base graph G of M does not admit a nowhere-zero 3-flow if and only if |V (G)| = 4. Furthermore, if for every connected component Ei (i≥2) of M, the matroid ase graph Gi of Mi = M|Ei has |V (Gi)|≥5, then G is Z3-connected which also implies that G admits nowhere-zero 3-flow immediately.

Keywords Matroid      base graph      nowhere-zero 3-flow      Z3-connectivity     
Corresponding Author(s): LIU Guizhen,Email:gzliu@sdu.edu.cn   
Issue Date: 01 February 2013
 Cite this article:   
Yinghao ZHANG,Guizhen LIU. Nowhere-zero 3-flows in matroid base graph[J]. Front Math Chin, 2013, 8(1): 217-227.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-012-0246-x
https://academic.hep.com.cn/fmc/EN/Y2013/V8/I1/217
1 Bondy J A, Murty U S R. Graph Theory with Application. New York: North-Holland, 1976
2 Cummins R L. Hamiltonian circuits in tree graph. IEEE Trans Circuits Syst , 1966, 13: 82-90
3 Fan G, Lai H, Xu R, Zhang C, Zhou C. Nowhere-zero 3-flows in triangularly connected graphs. J Combin Theory Ser B , 2008, 98: 1325-1336
doi: 10.1016/j.jctb.2008.02.008
4 Jaeger F. Flows and generalized coloring theorem in graphs. J Combin Theory Ser B , 1979, 26: 205-216
doi: 10.1016/0095-8956(79)90057-1
5 Jaeger F, Linial N, Payan C, Tarsi M. Group connectivity of graphs—a nonhomogeneous analogue of nowhere-zero flow properties. J Combin Theory Ser B , 1992, 56: 165-182
doi: 10.1016/0095-8956(92)90016-Q
6 Lai H. Group connectivity of 3-edge-connected chordal graphs. Graphs Combin , 2000, 16: 165-176
doi: 10.1007/s003730050014
7 Lai H. Nowhere-zero 3-flows in locally connected graphs. J Graph Theory , 2003, 42: 211-219
doi: 10.1002/jgt.10085
8 Liu G. A lower bound on connectivities of matroid base graphs. Discrete Math , 1988, 64: 55-66
doi: 10.1016/0012-365X(88)90177-X
9 Liu G, Li P. Paths in circuit graphs of matroid. Theoret Comput Sci , 2008, 396: 258-263
doi: 10.1016/j.tcs.2008.01.033
10 Oxley J G. Matroid Theory. New York: Oxford University Press, 1992
11 Potocnik P, Skoviera M, Skrekovski R. Nowhere-zero 3-flows in abelian Cayley graphs. Discrete Math , 2005, 297: 119-127
doi: 10.1016/j.disc.2005.04.013
12 Seymour P D. Nowhere-zero 6-flows. J Combin Theory Ser B , 1981, 30: 82-94
doi: 10.1016/S0095-8956(81)80013-5
13 Shu J, Zhang C. Nowhere-zero 3-flows in products of graphs. J Graph Theory , 2005, 50: 79-89
doi: 10.1002/jgt.20095
14 Tutte W T. A contribution on the theory of chromatic polynomial. Canad J Math , 1954, 6: 80-91
doi: 10.4153/CJM-1954-010-9
15 Tutte W T. On the algebraic theory of graph colorings. J Combin Theory , 1966, 1: 15-50
doi: 10.1016/S0021-9800(66)80004-2
16 Zhang C. Integer Flows and Cycle Covers of Graphs. New York: Marcel Dekker, 1997
[1] Ziwen HUANG,Xiangwen LI. Degree sum of a pair of independent edges and Z3-connectivity[J]. Front. Math. China, 2016, 11(6): 1533-1567.
[2] Liangchen LI,Xiangwen LI. Nowhere-zero 3-flows in Cayley graphs on generalized dihedral group and generalized quaternion group[J]. Front. Math. China, 2015, 10(2): 293-302.
[3] Hao FAN, Guizhen LIU. Properties of Hamilton cycles of circuit graphs of matroids[J]. Front Math Chin, 2013, 8(4): 801-809.
[4] Erling WEI, Wenliang TANG, Xiaofeng WANG. Flows in 3-edge-connected bidirected graphs[J]. Front Math Chin, 2011, 6(2): 339-348.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed