Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2013, Vol. 8 Issue (1) : 229-238    https://doi.org/10.1007/s11464-012-0251-0
RESEARCH ARTICLE
A characterization of λ-central BMO space
Fayou ZHAO1(), Shanzhen LU2
1. Department of Mathematics, Shanghai University, Shanghai 200444, China; 2. School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
 Download: PDF(106 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We give a characterization of the λ-central BMO space via the boundedness of commutators of n-dimensional Hardy operators.

Keywords λ-central BMO space      n-dimensional Hardy operator      commutator     
Corresponding Author(s): ZHAO Fayou,Email:zhaofayou2008@yahoo.com.cn   
Issue Date: 01 February 2013
 Cite this article:   
Fayou ZHAO,Shanzhen LU. A characterization of λ-central BMO space[J]. Front Math Chin, 2013, 8(1): 229-238.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-012-0251-0
https://academic.hep.com.cn/fmc/EN/Y2013/V8/I1/229
1 Alvarez J, Guzmián-Partida M, Lakey J. Spaces of bounded λ-central mean oscillation, Morrey spaces, and λ-central Carleson measures. Collect Math , 2000, 51: 1-47
2 Bastero J, Milman M, Ruiz F J. Commutators of the maximal and sharp functions. Proc Amer Math Soc , 2000, 128: 3329-3334
doi: 10.1090/S0002-9939-00-05763-4
3 Chen Y Z, Lau K S. Some new classes of Hardy spaces. J Funct Anal , 1989, 84: 255-278
doi: 10.1016/0022-1236(89)90097-9
4 Christ M, Grafakos L. Best constants for two nonconvolution inequalities. Proc Amer Math Soc , 1995, 123: 1687-1693
doi: 10.1090/S0002-9939-1995-1239796-6
5 Coifman R R, Rochberg R, Weiss G. Factorization theorems for Hardy spaces in several variables. Ann Math , 1976, 103: 611-635
doi: 10.2307/1970954
6 Ding Y, Lu S Z, Yabuta K. On commutators of Marcinkiewicz integrals with rough kernel. J Math Anal Appl , 2002, 275: 60-68
doi: 10.1016/S0022-247X(02)00230-5
7 Faris W. Weak Lebesgue spaces and quantum mechanical binding. Duke Math J , 1976, 43: 365-373
doi: 10.1215/S0012-7094-76-04332-5
8 Fefferman C. Characterization of bounded mean oscillation. Bull Amer Math Soc , 1971, 77: 587-588
doi: 10.1090/S0002-9904-1971-12763-5
9 Fu Z W, Liu Z G, Lu S Z, Wang H B. Characterization for commutators of n-dimensional fractional Hardy operators. Sci China Ser A , 2007, 50: 1418-1426
doi: 10.1007/s11425-007-0094-4
10 Fu Z W, Lu S Z. Commutators of generalized Hardy operators. Math Nachr , 2009, 282: 832-845
doi: 10.1002/mana.200610775
11 Garcì-Cuerva J. Hardy spaces and Beurling algebras. J Lond Math Soc , 1989, 39: 499-513
doi: 10.1112/jlms/s2-39.3.499
12 Hardy G H, Littlewood J, Póya G. Inequalities . 2nd ed. London/New York: Cambridge University Press , 1952
13 Komori Y. Notes on commutators of Hardy operators. Int J Pure Appl Math , 2003, 7: 329-334
14 Long S C, Wang J. Commutators of Hardy operators. J Math Anal Appl , 2002, 274: 626-644
doi: 10.1016/S0022-247X(02)00321-9
15 Lu S Z, Yang D C. The central BMO spaces and Littlewood-Paley operators. Approx Theory Appl , 1995, 11: 72-94
16 Meng Y, Yang D C. Boundedness of commutators with Lipschitz functions in nonhomogeneous spaces. Taiwanese J Math , 2006, 10: 1443-1464
17 Segovia C, Torrea J L. Vector-valued commutators and applications. Indiana Univ Math J , 1989, 38: 959-971
doi: 10.1512/iumj.1989.38.38044
18 Tang C Q, Li Q G, Ma B L. Commutators of fractional integral operator associated to a nondoubling measures on metric spaces. Taiwanese J Math , 2009, 13: 1043-1052
[1] Rui BU, Zunwei FU, Yandan ZHANG. Weighted estimates for bilinear square functions with non-smooth kernels and commutators[J]. Front. Math. China, 2020, 15(1): 1-20.
[2] Yanping CHEN, Liwei WANG. L2( n) boundedness for Calderón commutator with rough variable kernel[J]. Front. Math. China, 2018, 13(5): 1013-1031.
[3] Huixia MO, Xiaojuan WANG, Ruiqing MA. Commutator of Riesz potential in p-adic generalized Morrey spaces[J]. Front. Math. China, 2018, 13(3): 633-645.
[4] Nguyen Minh CHUONG, Nguyen Thi HONG, Ha Duy HUNG. Bounds of weighted multilinear Hardy-Cesàro operators in p-adic functional spaces[J]. Front. Math. China, 2018, 13(1): 1-24.
[5] Wei WANG, Jingshi XU. Multilinear Calderón-Zygmund operators and their commutators with BMO functions in variable exponent Morrey spaces[J]. Front. Math. China, 2017, 12(5): 1235-1246.
[6] Dongxiang CHEN, Shanzhen LU, Suzhen MAO. Multiple weighted estimates for maximal vector-valued commutator of multilinear Calderón-Zygmund singular integrals[J]. Front. Math. China, 2017, 12(3): 531-558.
[7] Jing ZHANG,Huoxiong WU. Oscillation and variation inequalities for singular integrals and commutators on weighted Morrey spaces[J]. Front. Math. China, 2016, 11(2): 423-447.
[8] Wenjuan LI,Qingying XUE. Continuity properties for commutators of multilinear type operators on product of certain Hardy spaces[J]. Front. Math. China, 2014, 9(6): 1325-1347.
[9] Shikun OU. Bijective maps on standard Borel subgroup of symplectic group preserving commutators[J]. Front Math Chin, 2012, 7(3): 497-512.
[10] Shanzhen LU. Some results and problems on commutators[J]. Front Math Chin, 2011, 6(5): 821-833.
[11] Shaoguang SHI, Zunwei FU, Shanzhen LU. Weighted estimates for commutators of one-sided oscillatory integral operators[J]. Front Math Chin, 2011, 6(3): 507-516.
[12] Shuli GONG, Bolin MA. Maximal operators of commutators of Bochner-Riesz means with Lipschitz functions[J]. Front Math Chin, 2011, 6(3): 427-447.
[13] Zunwei FU, Shanzhen LU, . Weighted Hardy operators and commutators on Morrey spaces[J]. Front. Math. China, 2010, 5(3): 531-539.
[14] LU Shanzhen. Marcinkiewicz integral with rough kernels[J]. Front. Math. China, 2008, 3(1): 1-14.
[15] CHEN Ping, LUO Shunlong. Direct approach to quantum extensions of Fisher information[J]. Front. Math. China, 2007, 2(3): 359-381.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed