Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2013, Vol. 8 Issue (1) : 19-40    https://doi.org/10.1007/s11464-012-0262-x
RESEARCH ARTICLE
Best rank one approximation of real symmetric tensors can be chosen symmetric
Shmuel FRIEDLAND()
Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL 60607-7045, USA
 Download: PDF(186 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We show that a best rank one approximation to a real symmetric tensor, which in principle can be nonsymmetric, can be chosen symmetric. Furthermore, a symmetric best rank one approximation to a symmetric tensor is unique if the tensor does not lie on a certain real algebraic variety.

Keywords Symmetric tensor      rank one approximation of tensors      uniqueness of rank one approximation     
Corresponding Author(s): FRIEDLAND Shmuel,Email:friedlan@uic.edu   
Issue Date: 01 February 2013
 Cite this article:   
Shmuel FRIEDLAND. Best rank one approximation of real symmetric tensors can be chosen symmetric[J]. Front Math Chin, 2013, 8(1): 19-40.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-012-0262-x
https://academic.hep.com.cn/fmc/EN/Y2013/V8/I1/19
1 Chen B, He S, Li Z, Zhang S. Maximum block improvement and polynomial optimization. SIAM J Optim , 2012, 22: 87-107
doi: 10.1137/110834524
2 Defant A, Floret K. Tensor Norms and Operator Ideals. Amsterdam: North-Holland, 1993
3 Friedland S. Inverse eigenvalue problems. Linear Algebra Appl , 1977, 17: 15-51
doi: 10.1016/0024-3795(77)90039-8
4 Friedland S. Variation of tensor powers and spectra. Linear Multilinear Algebra , 1982, 12: 81-98
doi: 10.1080/03081088208817475
5 Friedland S, Robbin J, Sylvester J. On the crossing rule. Comm Pure Appl Math , 1984, 37: 19-37
doi: 10.1002/cpa.3160370104
6 Golub G H, Van Loan C F. Matrix Computation. 3rd ed. Baltimore: John Hopkins Univ Press, 1996
7 Kolda T G. On the best rank-k approximation of a symmetric tensor. Householder , 2011
8 Lim L-H. Singular values and eigenvalues of tensors: a variational approach. In: Proc IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, (CAMSAP ’05), 1 . 2005, 129-132
[1] Jie WEN, Qin NI, Wenhuan ZHU. Rank-r decomposition of symmetric tensors[J]. Front. Math. China, 2017, 12(6): 1339-1355.
[2] Changqing XU, Yiran XU. Tensor convolutions and Hankel tensors[J]. Front. Math. China, 2017, 12(6): 1357-1373.
[3] Ruijuan ZHAO,Lei GAO,Qilong LIU,Yaotang LI. Criterions for identifying H-tensors[J]. Front. Math. China, 2016, 11(3): 661-678.
[4] Kelly J. PEARSON, Tan ZHANG. Maximal number of distinct H-eigenpairs for a two-dimensional real tensor[J]. Front Math Chin, 2013, 8(1): 85-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed