Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    0, Vol. Issue () : 317-343    https://doi.org/10.1007/s11464-013-0229-6
RESEARCH ARTICLE
Mixed principal eigenvalues in dimension one
Mu-Fa CHEN, Lingdi WANG(), Yuhui ZHANG
School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems (Beijing Normal University), Ministry of Education, Beijing 100875, China
 Download: PDF(203 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This is one of a series of papers exploring the stability speed of one-dimensional stochastic processes. The present paper emphasizes on the principal eigenvalues of elliptic operators. The eigenvalue is just the best constant in the L2-Poincaré inequality and describes the decay rate of the corresponding diffusion process. We present some variational formulas for the mixed principal eigenvalues of the operators. As applications of these formulas, we obtain case by case explicit estimates, a criterion for positivity, and an approximating procedure for the eigenvalue.

Keywords Eigenvalue      variational formula      explicit estimate      positivity criterion      approximating procedure     
Corresponding Author(s): WANG Lingdi,Email:wanglingdi@mail.bnu.edu.cn   
Issue Date: 01 April 2013
 Cite this article:   
Yuhui ZHANG,Mu-Fa CHEN,Lingdi WANG. Mixed principal eigenvalues in dimension one[J]. Front Math Chin, 0, (): 317-343.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-013-0229-6
https://academic.hep.com.cn/fmc/EN/Y0/V/I/317
1 Chen M F. Analytic proof of dual variational formula for the first eigenvalue in dimension one. Sci China Ser A , 1999, 42(8): 805-815
doi: 10.1007/BF02884267
2 Chen M F. Explicit bounds of the first eigenvalue. Sci China Ser A , 2000, 43(10): 1051-1059
doi: 10.1007/BF02898239
3 Chen M F. Variational formulas and approximation theorems for the first eigenvalue in dimension one. Sci China Ser A , 2001, 44(4): 409-418
doi: 10.1007/BF02881877
4 Chen M F. Eigenvalues, Inequalities, and Ergodic Theory. New York: Springer, 2005
5 Chen M F. Speed of stability for birth-death process. Front Math China , 2010, 5(3): 379-516
doi: 10.1007/s11464-010-0068-7
6 Chen M F. General estimate of the first eigenvalue on manifolds. Front Math China , 2011, 6(6): 1025-1043
doi: 10.1007/s11464-011-0164-3
7 Chen M F. Basic estimates and stability rate for one-dimensional diffusion. In: Probability Approximations and Beyond . Lecture Notes in Statistics, Vol 205. 2012, 75-99
doi: 10.1007/978-1-4614-1966-2_6
8 Chen M F. Lower bounds of principle eigenvalue in dimension one. Front Math China , 2012, 7(4): 645-668
doi: 10.1007/s11464-012-0223-4
9 Chen M F, Wang F Y. Estimation of spectral gap for elliptic operators. Trans Amer Math Soc , 1997, 349(3): 1239-1267 . See also book [4] for some supplement: http://math.bnu.edu.cn/~chenmf/main_eng.htm
10 Wang J. First eigenvalue of one-dimensional diffusion processes. Elect Commun Probab , 2009, 14: 232-244
doi: 10.1214/ECP.v14-1464
11 Zettl A. Sturm-Liouville Theory. Providence: Amer Math Soc, 2005
[1] Xinya YANG. Dependence of eigenvalues of regular Sturm-Liouville operators on the boundary condition[J]. Front. Math. China, 2023, 18(1): 63-74.
[2] Wei MEI, Qingzhi YANG. Upper bounds for eigenvalues of Cauchy-Hankel tensors[J]. Front. Math. China, 2021, 16(4): 1023-1041.
[3] Zheng-Hai HUANG, Xia LI, Yong WANG. Bi-block positive semidefiniteness of bi-block symmetric tensors[J]. Front. Math. China, 2021, 16(1): 141-169.
[4] Yizheng FAN, Zhu ZHU, Yi WANG. Least H-eigenvalue of adjacency tensor of hypergraphs with cut vertices[J]. Front. Math. China, 2020, 15(3): 451-465.
[5] Hongmei YAO, Li MA, Chunmeng LIU, Changjiang BU. Brualdi-type inclusion sets of Z-eigenvalues and lk,s-singular values for tensors[J]. Front. Math. China, 2020, 15(3): 601-612.
[6] Haibin CHEN, Yiju WANG, Guanglu ZHOU. High-order sum-of-squares structured tensors: theory and applications[J]. Front. Math. China, 2020, 15(2): 255-284.
[7] Xin LI, Jiming GUO, Zhiwen WANG. Minimal least eigenvalue of connected graphs of order n and size m = n + k (5≤k≤8)[J]. Front. Math. China, 2019, 14(6): 1213-1230.
[8] Kinkar Chandra DAS, Huiqiu LIN, Jiming GUO. Distance signless Laplacian eigenvalues of graphs[J]. Front. Math. China, 2019, 14(4): 693-713.
[9] Jiahao XU, Xin ZHAO. Absence of eigenvalues for quasiperiodic Schrödinger type operators[J]. Front. Math. China, 2019, 14(3): 645-659.
[10] Changli LIU, Ren-Cang LI. Structured backward error for palindromic polynomial eigenvalue problems, II: Approximate eigentriplets[J]. Front. Math. China, 2018, 13(6): 1397-1426.
[11] Yueshuang LI. Approximation theorem for principle eigenvalue of discrete p-Laplacian[J]. Front. Math. China, 2018, 13(5): 1045-1061.
[12] Mu-Fa CHEN. Efficient algorithm for principal eigenpair of discrete p-Laplacian[J]. Front. Math. China, 2018, 13(3): 509-524.
[13] Yuan HOU, An CHANG, Lei ZHANG. Largest H-eigenvalue of uniform s-hypertrees[J]. Front. Math. China, 2018, 13(2): 301-312.
[14] Haibin CHEN, Liqun QI, Yisheng SONG. Column sufficient tensors and tensor complementarity problems[J]. Front. Math. China, 2018, 13(2): 255-276.
[15] Haibin CHEN, Yiju WANG. On computing minimal H-eigenvalue of sign-structured tensors[J]. Front. Math. China, 2017, 12(6): 1289-1302.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed